

Cambridge International Examinations Cambridge Pre-U Certificate

FURTHER MATHEMATICS (PRINCIPAL)

9795/01

Paper 1 Further Pure Mathematics

For Examination from 2016

SPECIMEN MARK SCHEME

3 hours

MAXIMUM MARK: 120

The syllabus is approved for use in England, Wales and Northern Ireland as a Cambridge International Level 3 Pre-U Certificate.

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.

The following abbreviations may be used in a mark scheme:

- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- aef Any equivalent form
- art Answers rounding to
- cwo Correct working only (emphasising that there must be no incorrect working in the solution)
- ft Follow through from previous error is allowed
- o.e. Or equivalent

1		$\sum_{r=1}^{n} (r^2 - r + 1) = \sum_{r=1}^{n} r^2 - \sum_{r=1}^{n} r + \sum_{r=1}^{n} 1$ Splitting summation and use of given results $= \frac{1}{6} n(n+1)(2n+1) - \frac{1}{2} n(n+1) + n$ 1 st for Σr^2 ; 2 nd for Σr & $\Sigma 1 = n$ $= \frac{1}{3} n(n^2 + 2)$ legitimately	M1
		$= \frac{1}{6}n(n+1)(2n+1) - \frac{1}{2}n(n+1) + n \qquad 1^{\text{st}} \text{ for } \Sigma r^2; \ 2^{\text{nd}} \text{ for } \Sigma r \ \& \Sigma 1 = n$	B1 B1
		$= \frac{1}{3}n(n^2 + 2)$ legitimately	A1
2		$A = k \int (\sin \theta + \cos \theta)^2 d\theta$ including squaring attempt; ignore limits and $k \neq \frac{1}{2}$	M1
		$A = k \int (\sin \theta + \cos \theta)^2 d\theta \qquad \text{including squaring attempt; ignore limits and } k \neq \frac{1}{2}$ $= \frac{1}{2} \int (1 + \sin 2\theta) d\theta \qquad \text{for use of the double-angle formula}$ $\mathbf{OR} \text{ integration of } \sin \theta \cos \theta \text{ as } k \sin^2 \theta \text{ or } k \cos^2 \theta$	B1
		$= \frac{1}{2} \left[\theta - \frac{1}{2} \cos 2\theta \right]_{0}^{\pi/2}$ ft (constants only) in the integration;	A1
		MUST be 2 separate terms	
		$=\frac{1}{4}\pi+\frac{1}{2}$	A1
3	(i)	$y = (\sinh x)^{\frac{1}{2}} \Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{2} (\sinh x)^{-\frac{1}{2}} \cdot \cosh x \mathbf{OR} y^2 = \sinh x \Rightarrow 2y \frac{\mathrm{d}y}{\mathrm{d}x} = \cosh x$	M1 A1
		$=\frac{\sqrt{1+y^4}}{2y}$	A1
	(ii)	$y = (\sinh x)^{\frac{1}{2}} \Rightarrow \frac{dy}{dx} = \frac{1}{2} (\sinh x)^{-\frac{1}{2}} \cdot \cosh x \mathbf{OR} y^2 = \sinh x \Rightarrow 2y \frac{dy}{dx} = \cosh x$ $= \frac{\sqrt{1+y^4}}{2y}$ $\int \frac{2y}{\sqrt{1+y^4}} dy = \int 1 \cdot dx \text{By separating variables in (i)'s answer}$ $\Rightarrow x = \int \frac{2y}{\sqrt{1+y^4}} dy$	M1
		$\Rightarrow x = \int \frac{2y}{\sqrt{1+y^4}} \mathrm{d}y$	A1
		But $x = \sinh^{-1} y^2$ so $\int \frac{2t}{\sqrt{1+t^4}} dx = \sinh^{-1}(t^2) + C$ condone missing " + C"	A1
		ALT.1 Set $t^2 = \sinh \theta$, $2t dt = \cosh \theta d\theta$ M1 Full substitution $\int \frac{2t}{\sqrt{1+t^4}} dt = \int \frac{\cosh \theta}{\sqrt{1+\sinh^2 \theta}} d\theta \mathbf{A1} = \int 1 d\theta = \theta = \sinh^{-1}(t^2) \mathbf{A1}$	
		ALT.2 Set $t^2 = \tan \theta$, $2t dt = \sec^2 \theta d\theta$ M1 Full substitution $\int \frac{2t}{\sqrt{1+t^4}} dt = \int \frac{\sec^2 \theta}{\sqrt{1+\tan^2 \theta}} d\theta \mathbf{A1} = \int \sec \theta d\theta$	
		$= \ln \sec\theta + \tan\theta = \ln t^2 + \sqrt{1 + t^4} \mathbf{A1}$	

_			
4	(i)	$y = \frac{x+1}{x^2+3} \implies y.x^2 - x + (3y-1) = 0$ Creating a quadratic in x	M1
		For real x , $1 - 4y(3y - 1) \ge 0$ Considering the discriminant	M1
		$12y^2 - 4y - 1 \le 0$ Creating a quadratic inequality	M1
		For real x , $(6y + 1)(2y - 1) \le 0$ Factorising/solving a 3-term quadratic	M1
		$-\frac{1}{6} \leqslant y \leqslant \frac{1}{2} \text{CAO}$	A1
	(ii)	$y = \frac{1}{2}$ substituted back $\Rightarrow \frac{1}{2} (x^2 - 2x + 1) = 0 \Rightarrow x = 1 [y = \frac{1}{2}]$	M1 A1
		$y - \frac{1}{6}$ = substituted back $\Rightarrow -\frac{1}{6} (x^2 + 6x + 9) = 0 \Rightarrow x = -3 [y = -\frac{1}{6}]$	M1 A1
5	(i) (a)	$ \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} $	B1
	(b)	$ \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} $ $ \begin{pmatrix} \cos \beta & \sin \beta \\ \sin \beta & -\cos \beta \end{pmatrix} $	B1
	(ii)	$ \begin{pmatrix} \cos\phi & \sin\phi \\ \sin\phi & -\cos\phi \end{pmatrix} \begin{pmatrix} \cos\theta & \sin\theta \\ \sin\theta & -\cos\theta \end{pmatrix} $ multiplication of 2 reflection matrices. Correct	M1 M1
		order.	
		$= \begin{pmatrix} \cos\phi\cos\theta + \sin\phi\sin\theta & \cos\phi\sin\theta - \sin\phi\cos\theta \\ \sin\phi\cos\theta - \cos\phi\sin\theta & \cos\phi\cos\theta + \sin\phi\sin\theta \end{pmatrix}$	
		$= \begin{pmatrix} \cos(\phi - \theta) & -\sin(\phi - \theta) \\ \sin(\phi - \theta) & \cos(\phi - \theta) \end{pmatrix}$ Use of the addition formulae; correctly done	M1 A1
		giving a Rotation (about O) through $(\phi - \theta)$	M1 A1
6	(i)	Possible orders are 1, 2, 3, 4, 6 & 12	В1
		By Lagrange's Theorem, the order of an element divides the order of the group (since the order of an element \equiv the order of the subgroup generated by that element)	B1
	(ii)	E.g. $y = xyx \implies y \cdot x^2y = xyx \cdot x^2y$ by ③	M1
		$= xy \cdot x^3 \cdot y = xy \cdot y^2 \cdot y $ by ②	M1
		$= x \cdot y^4 = x \cdot (y^2)^2$ [by ②]	
		$= x \cdot (x^3)^2 = x \cdot e \text{by } \mathbb{O}$	
		2 M 's for first, correct uses of 2 different conditions; the A for the 3 rd condition used to clinch the result.	A1
	(iii)	Proving G not abelian: [e.g. by $xyx = y$ but $x^2 \neq e$] \Rightarrow G not cyclic OR establishing a contradiction	B1 B1

7	(i)	$\cos 4\theta + i \sin 4\theta = (c + is)^4$ Use of de Moivre's Theorem	M1
		$= c^4 + 4c^3 \cdot is + 6c^2 \cdot i^2 s^2 + 4c \cdot i^3 s^3 + i^4 s^4$ Binomial expansion attempted	M1
		$\cos 4\theta = c^4 - 6c^2s^2 + s^4$ and $\sin 4\theta = 4c^3s - 4cs^3$ Equating Re & Im parts	M1
		$\tan 4\theta = \frac{\sin 4\theta}{\cos 4\theta} = \frac{4c^3s - 4cs^3}{c^4 - 6c^2s^2 + s^4}$	M1
		Dividing throughout by c^4 to get $\frac{4t - 4t^3}{1 - 6t^2 + t^4}$ legitimately	A1
	(ii)	$t = \frac{1}{5} \Rightarrow \tan \theta = \frac{120}{119}$	B1
		$\tan\left(\frac{1}{4}\pi + \tan^{-1}\frac{1}{239}\right) = \frac{1 + \frac{1}{239}}{1 - \frac{1}{239}} = \frac{120}{119}$	M1 A1
		Noting that this is $\tan(4\tan^{-1}\frac{1}{5})$ so that $4\tan^{-1}\frac{1}{5} = \frac{1}{4}\pi + \tan^{-1}\frac{1}{239}$	A1
8	(i)	Substituting $x = 1$, $f(1) = 2$ and $f'(1) = 3$ into (*) \Rightarrow $f''(1) = 5$	M1 A1
	(ii)	$ \left\{ x^2 f'''(x) + 2xf''(x) \right\} + \left\{ (2x - 1)f''(x) + 2f'(x) \right\} - 2f'(x) = 3e^{x-1} $ Product Rule used twice; at least one bracket correct	M1 A1
		Substituting $x = 1$, $f'(1) = 3$ and $f''(1) = 5$ into this $\Rightarrow f'''(1) = -12$ ft their $f''(1)$	M1 A1
	(iii)	$f(x) = f(1) + f'(1)(x-1) + \frac{1}{2}f''(1)(x-1)^2 + \frac{1}{6}f'''(1)(x-1)^3 + \dots$	M1
		Use of the Taylor series	
		$= 2 + 3(x-1) + \frac{5}{2}(x-1)^2 - 2(x-1)^3 + \dots$ 1 st two terms CAO;	A1 A1
		2 nd two terms ft (i) & (ii)'s answers	
	(iv)	Substituting $x = 1.1 \implies f(1.1) \approx 2.323$ to 3d.p. CAO	M1 A1
9	(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} + y = 3x y^4 \text{is a Bernouilli (differential) equation}$	
		$u = \frac{1}{y^3} \implies \frac{\mathrm{d}u}{\mathrm{d}x} = -\frac{3}{y^4} \times \frac{\mathrm{d}y}{\mathrm{d}x}$	B1
		Then $\frac{dy}{dx} + y = 3x y^4$ becomes $-\frac{3}{y^4} \times \frac{dy}{dx} - \frac{3}{y^3} = -9x \implies \frac{du}{dx} - 3u = -9x$ AG	M1 A1

	(ii)	Method 1	
		IF is e^{-3x}	M1 A1
		$\Rightarrow ue^{-3x} = \int -9xe^{-3x} dx$	M1
		$= 3xe^{-3x} - \int 3e^{-3x} dx$ Use of "parts"	M1
		$= (3x+1)e^{-3x} + C$	A1
		General solution is $u = 3x + 1 + Ce^{3x}$ ft	B1
		$\Rightarrow y^3 = \frac{1}{3x + 1 + Ce^{3x}}$ ft	B1
		Using $x = 0$, $y = \frac{1}{2}$ to find C $C = 7$ or $y^3 = \frac{1}{3x + 1 + 7e^{3x}}$	M1 A1
		Method 2	
		Auxiliary equation $m-3=0 \implies u_C = Ae^{3x}$ is the complementary function	M1 A1
		For particular integral try $u_P = ax + b$, $u_P' = a$	M1
		Substituting $u_P = ax + b$ and $u_P' = a$ into the d.e. and comparing terms	M1
		$a - 3ax - 3b = -9x \implies a = 3, b = 1$ i.e. $u_P = 3x + 1$	A1
		General solution is $u = 3x + 1$ Ae^{3x} ft particular integral + complementary function provided particular integral has no arbitrary constants and complementary function has one	B1
		$\Rightarrow y^3 = \frac{1}{3x + 1 + Ae^{3x}}$ ft	В1
		Using $x = 0$, $y = \frac{1}{2}$ to find A $A = 7$ or $y^3 = \frac{1}{3x + 1 + 7e^{3x}}$	M1 A1
10	(i)	Substituting $\begin{pmatrix} 1+3\lambda \\ -3+4\lambda \\ 2+6\lambda \end{pmatrix}$ into plane equation; i.e. $\begin{pmatrix} 1+3\lambda \\ -3+4\lambda \\ 2+6\lambda \end{pmatrix} \bullet \begin{pmatrix} 2 \\ -6 \\ 3 \end{pmatrix} = k$ OR any point on line (since "given")	M1
		$k = 2 + 6\lambda + 18 - 24\lambda + 6 + 18\lambda = 26$	A1

(ii)	Working with vector $\begin{pmatrix} 10+2m\\ 2-6m\\ 3m-43 \end{pmatrix}$.	B1
	Substituting into the plane equation:	M1
	Solving a linear equation in <i>m</i> : $20 + 4m - 12 + 36m + 9m - 129 = 26$	M1
	$m=3 \implies Q=(16,-16,-34)$	A1
	Shortest distance is $ m \begin{pmatrix} 2 \\ -6 \\ 3 \end{pmatrix} = 21$ or $PQ = \sqrt{6^2 + 18^2 + 9^2} = 21$	A1
(iii)	Finding 3 points in the plane: e.g. $A(1, -3, 2)$, $B(4, 1, 8)$, $C(10, 2, -43)$	M1
	Then 2 vectors in (// to) plane: e.g. $\overrightarrow{AB} = \begin{pmatrix} 3 \\ 4 \\ 6 \end{pmatrix}$, $\overrightarrow{AC} = \begin{pmatrix} 9 \\ 5 \\ -45 \end{pmatrix}$, $\overrightarrow{BC} = \begin{pmatrix} 6 \\ 1 \\ -51 \end{pmatrix}$	M1
	OR B1 B1 for any two vectors in the plane	
	Vector product of any two of these to get normal to plane: $\begin{pmatrix} 10 \\ -9 \\ 1 \end{pmatrix}$	M1 A1
	(any non-zero multiple)	
	$d = \begin{pmatrix} 10 \\ -9 \\ 1 \end{pmatrix} \bullet \text{ (any position vector)} = \begin{pmatrix} 10 \\ -9 \\ 1 \end{pmatrix} \bullet \begin{pmatrix} 1 \\ -3 \\ 2 \end{pmatrix} \text{ e.g.} = 39$ $\Rightarrow 10x - 9y + z = 39 \text{ CAO (aef)}$	M1 A1
	ALTERNATE SOLUTION	
	$ax + by + cz = d \text{ contains} \begin{pmatrix} 1+3\lambda \\ -3+4\lambda \\ 2+6\lambda \end{pmatrix} \text{ and } \begin{pmatrix} 10 \\ 2 \\ -43 \end{pmatrix}$	
	so $a + 3a\lambda + 4b\lambda - 3b + 2c + 6c\lambda = d$ and $10a + 2b - 43c = d$	M1 B1
	Then $a-3b+2c=d$ and $3a+4b+6c=0$ (λ terms) i.e. equating terms	M1
	Eliminating (e.g.) c from 1 st two equations $\Rightarrow 9a + 10b = 0$	M1
	Choosing $a = 10$, $b = -9 \implies c = 1$ and $d = 39$ i.e. $10x - 9y + z = 39$ CAO	M1 A1

11	(i)	$ w = \sqrt{(\sqrt{3} - 1)^2 + (\sqrt{3} + 1)} = \sqrt{4 - 2\sqrt{3} + 4 + 2\sqrt{3}} = \sqrt{8}$ or $2\sqrt{2}$	M1 A1
		$\arg(w) = \tan^{-1}\left(\frac{\sqrt{3}+1}{\sqrt{3}-1} \times \frac{\sqrt{3}+1}{\sqrt{3}+1}\right) = \tan^{-1}\left(2+\sqrt{3}\right) = \frac{5}{12}\pi$	M1 A1
	(ii) (a)	$z^{3} = \left(2\sqrt{2}, \frac{5}{12}\pi\right), \left(2\sqrt{2}, \frac{29}{12}\pi\right), \left(2\sqrt{2}, -\frac{19}{12}\pi \text{ or } \frac{53}{12}\pi\right)$	
		$\sqrt[3]{ w }$; $\frac{\arg(w)}{3}$ These method marks can be earned for just the first root $\Rightarrow z = \left(\sqrt{2}, \frac{5}{36}\pi\right), \left(\sqrt{2}, \frac{29}{36}\pi\right), \left(\sqrt{2}, -\frac{19}{36}\pi\right)$ A marks for the 2 nd & 3 rd roots: $r e^{(i\theta)}$ forms equally acceptable	M1 M1 A1 A1
	(b)	z_1, z_2, z_3 the roots of $z^3 - 0.z^2 + 0.z - w = 0$ $\Rightarrow z_1 z_2 z_3 = w = (\sqrt{3} - 1) + i(\sqrt{3} + 1)$ ALT. Multiplying the 3 roots together in any form	M1 A1
	(c)	Three points in approx. correct places All equally spaced around a circle, centre O , radius $\sqrt{2}$ (Explained that Δ_1 equilateral) $l = 2 \times \sqrt{2} \sin(\frac{1}{2} \times \frac{2}{3}\pi) = \sqrt{6}$	M1 M1 A1
		$l = 2 \times \sqrt{2} \sin(\frac{1}{2} \times \frac{2}{3} \pi) = \sqrt{6}$ or by the <i>Cosine Rule</i>	M1 A1
	(d)	$k = \exp\left\{-i.\frac{5}{36}\pi\right\} \text{ or } \exp\left\{-i.\frac{29}{36}\pi\right\} \text{ or } \exp\left\{i.\frac{19}{36}\pi\right\}$	B1

12	(i)	$I_n = \int_0^3 x^{n-1} \left(x \sqrt{16 + x^2} \right) dx$ Correct splitting <i>and</i> use of parts	M1
		$= \left[x^{n-1} \cdot \frac{\left(16 + x^2\right)^{3/2}}{3} \right]_0^3 - \int_0^3 (n-1)x^{n-2} \frac{\left(16 + x^2\right)^{3/2}}{3} dx$	A1
		$= 3^{n-2} \cdot 125 - \left(\frac{n-1}{3}\right) \int_0^3 x^{n-2} \left(16 + x^2\right) \sqrt{16 + x^2} dx$ Method to get 2 nd integral of correct form	M1
		$= 3^{n-2}.125 - \left(\frac{n-1}{3}\right) \left\{16I_{n-2} + I_n\right\} $ [i.e. reverting to I's in 2 nd integral ft]	M1
		$\Rightarrow 3 I_n = 3^{n-1}.125 - 16(n-1) I_{n-2} - (n-1) I_n$ Collecting up I_n s	M1
		$(n+2) I_n = 125 \times 3^{n-1} - 16(n-1) I_{n-2}$ AG	A1
	(ii) (a)		
		Spiral (with r increasing)	B1
		From O to just short of $\theta = \pi$	B1
	(b)	$r = \frac{1}{4}\theta^4 \implies \frac{\mathrm{d}r}{\mathrm{d}\theta} = \theta^3 \text{and} r^2 + \left(\frac{\mathrm{d}r}{\mathrm{d}\theta}\right)^2 = \frac{1}{16}\theta^8 + \theta^6$	M1 A1
		$L = \int_0^3 \frac{1}{4} \theta^3 \sqrt{16 + \theta^2} \ \left(= \frac{1}{4} I_3 \right)$	M1 A1
		$L = \int_0^3 \frac{1}{4} \theta^3 \sqrt{16 + \theta^2} (= \frac{1}{4} I_3)$ $\text{Now} I_1 = \left[\frac{1}{3} (16 + x^2)^{3/2} \right]_0^3 = \frac{61}{3}$	B1
		and $5I_3 = 125 \times 9 - 16 \times 2\left(\frac{61}{3}\right) = \frac{1423}{3}$ or $474\frac{1}{3}$ Use of given reduction formula	M1
		so that $L = \frac{1}{20} \times \frac{1423}{3} = \frac{1423}{60}$ or $23\frac{43}{60}$ or awrt 23.7 ft only from suitable $k I_3$	A1

13	Base-line case: for $n = 5$, 13579 $R_5 = 1508$ 7 6269 contains a string of $(5 - 4 = 1)$ 7s	B1
	$13579 R_6 = 1508776269$, $13579 R_7 = 15087776269$, etc. or form of 1 st & last 4 digits	B1
	Assume that, for some $k \ge 5$, 13579 $R_k = 1508 \frac{777}{(k-4).7's}$ 6269. Induction hypothesis	M1
	Then, for $n = k + 1$, $13579 R_{k+1} = 13579(10R_k + 1)$	M1
	Give the M mark for the key observation that $R_{k+1} = 10R_k + 1$ or $10^k + R_k$, even if not subsequently used.	
	$=1508\frac{777}{(k-4)7's}62690$	
	$= \frac{+13579}{1508 \frac{777}{(k-4+1)7}, 6269}$	A1
	which contains a string of $(k-4+1)$ 7s, as required. Proof follows by induction (usual round-up).	A1