

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

0751220488

CO-ORDINATED SCIENCES

0654/21

Paper 2 (Core)

October/November 2011

2 hours

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs, tables or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO **NOT** WRITE IN ANY BARCODES.

Answer all questions.

A copy of the Periodic Table is printed on page 24.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Exam	iner's Use
1	
2	
3	
4	
5	
6	
7	
8	
9	
Total	

This document consists of 23 printed pages and 1 blank page.

1 (a) Fig. 1.1 shows a section through a human eye.

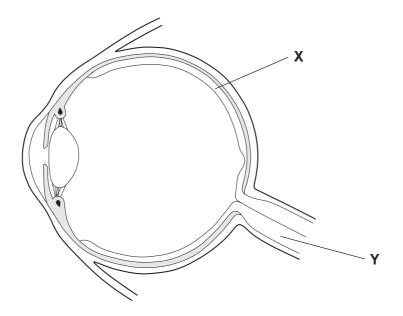


Fig. 1.1

(i)	Name parts X and Y .	
	X	
	Υ	[2]
(ii)	On Fig. 1.1, draw one ray of light entering the eye and reaching an area when light-sensitive cells are found.	re 2]
(iii)	On Fig. 1.1, use a label line and the letter F to label one part of the eye that help to focus light onto the light-sensitive part of the eye.)S 1]

(iv)	Describe how information is sent from the light-sensitive cells to the brain.
	[2]

(b)	Alm DN/	nost all cells in the body have a nucleus, which contains chromosomes made of IA.	
	(i)	Name one type of cell in the human body that does not contain a nucleus.	
		[1]	
	(ii)	In humans, a sperm cell has 23 chromosomes.	
		Suggest the number of chromosomes that are present in one of the light-sensitive cells in the human eye.	
		[1]	
	(iii)	Outline the function of DNA.	
		[2]	

2 Diamonds, sapphires and rubies are found in the Earth's crust and are valuable as industrial materials and for making jewellery.

For Examiner's Use

(a) Table 2.1 shows the numbers of protons, neutrons and electrons in three atoms, **X**, **Y** and **Z**.

Table 2.1

atom	number of protons	number of neutrons	number of electrons
x	5	6	5
Y	6	7	6
Z	12	12	12

	(i)	Diamonds are made of the element carbon.	
		Explain which one of the atoms, \mathbf{X} , \mathbf{Y} or \mathbf{Z} , shown in Table 2.1 is a carbon atom.	
		atom	
		explanation	
			[1]
	(ii)	State the nucleon number (mass number) of atom X in Table 2.1.	
			[1]
(b)	The	e main compound in sapphires and rubies is aluminium oxide.	
	Alu	minium oxide is an ionic compound.	
	(i)	Aluminium oxide has the chemical formula, Al_2O_3 .	
		Explain what this formula means.	
			••••
			[2]

	(ii)	State one way in which an ion differs from an atom.
		[1]
(c)		2.1 shows a simplified diagram of a process which is used to obtain metallic minium.
		power supply molten mixture containing aluminium oxide
		Fig. 2.1
	(i)	Name the process shown in Fig. 2.1, and state the meaning of the word anode.
		name of process
		meaning of anode
		[2]
	(ii)	Explain why the mixture containing aluminium oxide in Fig. 2.1 must be kept molten.
		[2]
1	(iii)	Complete the simple word chemical equation below which describes the main reaction taking place in the process in Fig. 2.1.
		aluminium oxide — + [1]

3 Fig. 3.1 shows a speed-time graph for the performance of an athlete in a race.

For Examiner's Use

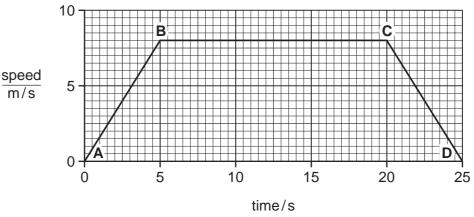


Fig. 3.1

(a)	Use the graph to	describe the motion	of the athlete between
-----	------------------	---------------------	------------------------

(i)	B and C,	

(b) Use the graph to calculate the acceleration of the athlete between A and B.
Show your working.

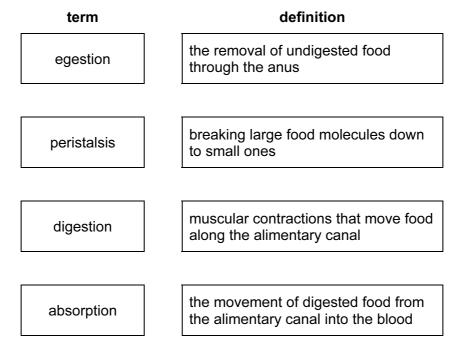
m/s ²	[2]

(c) The athlete runs a distance of 160 m in 25 s.

Calculate the average speed of the athlete.

State the formula that you use and show your working.

formula used


working

m/s [2]

(d)	The power output of the athlete is 600 W.
	Calculate the amount of work done by the athlete over 5 seconds.
	Show your working.
	J [2]
(e)	After the race the athlete is sweating. The sweat evaporates from the surface of the athlete's skin.
	Describe the process of evaporation in terms of particles.
	[2]

4 (a) Draw lines to link each term to its correct definition.

For Examiner's Use

[3]

(b) Table 4.1 shows some information about enzymes found in the human alimentary canal.

Complete the table.

Table 4.1

enzyme	substrate	product
amylase		maltose
	proteins	amino acids
		fatty acids and glycerol

[4]

(c)		trients such as amino acids and glucose are carried from the alimentary canal to the er. The liver converts any excess amino acids to a nitrogenous waste product.		
	(i)	Name this waste product. [1]		
	(ii)	Name the organs that excrete this waste product.		
		[1]		
	(iii)	The liver converts excess glucose in the blood into glycogen. The glycogen is then stored in cells in the liver. Glycogen is an insoluble substance.		
		Using your knowledge of osmosis, suggest why liver cells might swell and burst if they stored large quantities of a soluble substance such as glucose.		
		וכו		
		[2]		
	(iv)	When body cells need glucose, liver cells convert some of their stored glycogen back into glucose. The cells then release the glucose into the blood.		
		Explain why body cells need glucose.		
		[2]		

5 (a) Fig. 5.1 shows a 230 V 60 W light bulb.

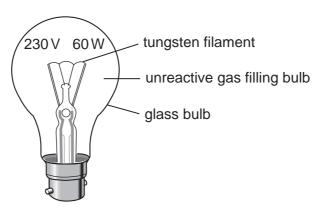


Fig. 5.1

(i)	Explain the meaning of	
	60 W on the bulb,	
	230 V on the bulb.	
	250 V OIT the build.	[2]
(ii)	Describe the energy transformations which occur in the light bulb when it has be switched on.	en
		[3]
iii)	Suggest why the light bulb is filled with an unreactive gas.	
		[1]

(b) The graph in Fig. 5.2 shows how the current through a different light bulb changes after it is switched on.

For Examiner's Use

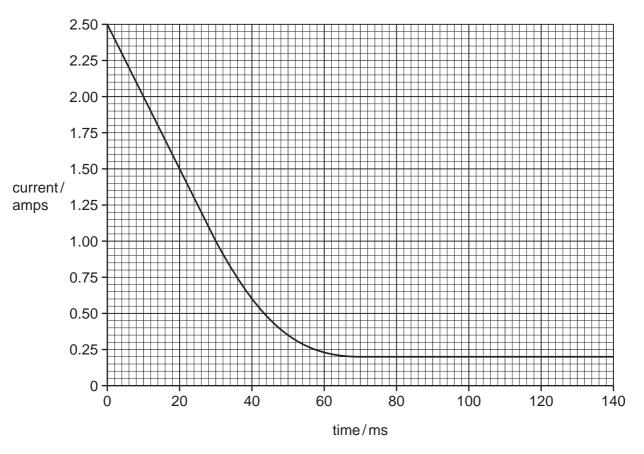


Fig. 5.2

(i)	Describe what happens to the current after the bulb is switched on.
	[2]
(ii)	Use the graph to find the current through the light bulb 80 ms after it is switched on.

..... A [1]

(c)	(i)	A lamp with a resistance of 1000 Ω , when lit, is connected in series with another lamp with a resistance of 2000 Ω , when lit.		
		Calculate the combined resistance of these two lamps.		
		State the formula that you use and show your working.		
		formula		
		working		
		0 101		
		Ω [2]		
	(ii)	The resistance of a piece of wire depends on a number of variables such as the length of the wire and the material from which it is made.		
		State two other factors which can affect the resistance of a piece of wire.		
		1		
		2 [2]		

© UCLES 2011 0654/21/O/N/11

BLANK PAGE

Please turn over for Question 6.

6 (a) Table 6.1 shows some properties of three solid elements A, B and C.

Table 6.1

element	density	electrical conductivity	melting point
Α	low	high	low
В	low	low	high
С	high	high	high

(1)	non-metal.
	element
	explanation
	[1]
(ii)	Suggest and explain which element, ${\bf A},{\bf B}$ or ${\bf C},$ has properties that are typical of a transition metal.
	element
	explanation
	[1]

(b) Components in electrical circuits are often joined by soldering them together.

For Examiner's Use

Solder is an alloy which has a lower melting point than any of the pure metals it contains.

Fig. 6.1 shows part of an electrical circuit into which a resistor has been soldered.

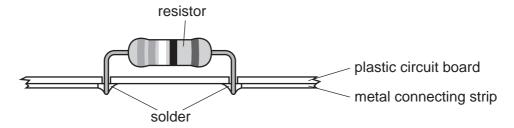


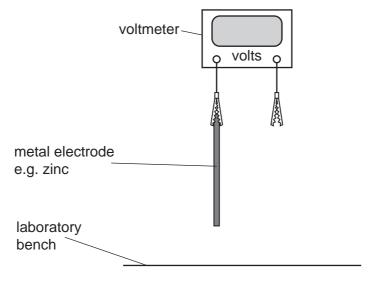
Fig. 6.1

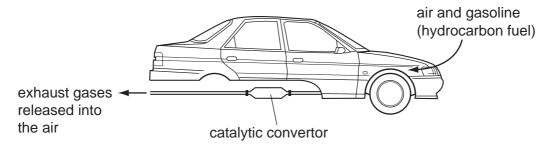
(i)	One type of solder is an alloy that contains tin, silver and copper.
	Describe briefly what must be done to make this solder.
	[1
(ii)	Explain why electrical components are joined by soldering rather than by the use

of a non-metallic adhesive (glue).

[1]

(c) Fig. 6.2 shows part of an electrical cell which a student is making in a school laboratory.




Fig. 6.2

Complete and label the diagram in Fig. 6.2 to show how the cell should appear when the student has finished. [3]

(d) Catalytic converters are used in modern cars to reduce air pollution.

For Examiner's Use

Fig. 6.3 shows a simplified diagram of a catalytic converter in a car.

	Fig. 6.3	
(i)	Name two gaseous compounds that are produced when a hydrocarbon undergoe complete combustion.	∋s
	1	
	2	[2]
(ii)	Suggest one other gas in the exhaust gas mixture whose concentration reduced by the catalytic converter.	is
		[1]

7 (a) Fig. 7.1 shows two children playing in a swimming pool.

For Examiner's Use

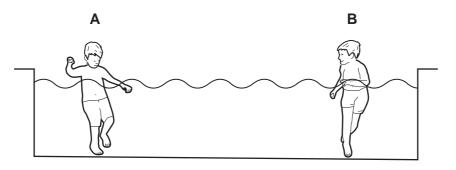


Fig. 7.1

Child A makes some small waves on the surface of the water.

(i) In 10 seconds, 5 complete waves pass by child **B** who is standing in the same pool.

Calculate the frequency of the waves.

Show your working.

	Hz	[1]
(ii)	Use suitable words to complete the sentences below to describe what waves do	
	A wave transfers energy without transferring	
	The energy is transferred in the direction that the wave	[2]
(iii)	Water waves are transverse waves.	
	Name one example of a longitudinal wave.	
		F41

(b) The top of a water slide is 10 m above the water in the pool. This is shown in Fig. 7.2.

For Examiner's Use

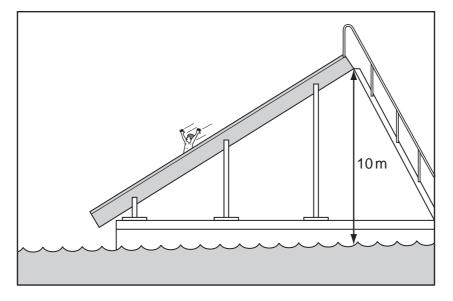


Fig. 7.2

A boy has a mass of 50 kg.

- (i) The gravitational field strength of the Earth is 10 N/kg.

 State the weight of the boy.

 N [1]
- (ii) The boy climbs a vertical distance of 10 m from the pool to the top of the slide.Calculate the work done in gaining this height.State the formula that you use and show your working.

formula used

working

J [2]

((iii) The boy slides down to the pool. His speed at the bottom of the slide is 12 m/s.		For Examiner's
	Calculate his kinetic energy at the bottom of the slide.		Use
	State the formula that you use and show your working.		
	formula used		
	working		
	J	[2]	
(c)	The water in the swimming pool is heated by the Sun.		
	State the method of heat transfer by which heat from the Sun reaches the Earth.		
		[1]	

8 The golden lion tamarin, *Leontopithecus rosalia*, is a monkey that lives in forests in Brazil. Its diet includes fruits and nectar from trees. Its predators include snakes, bamboo rats and owls.

For Examiner's Use

(a)	(i)	State the correct biological term for a two-word Latin name such as Leontopithecurosalia.	
			[1]
	(ii)	Suggest an advantage of giving each species of organism a Latin name like this.	
			[1]

(b) (i) In the space below, use the information provided to construct a food web that includes golden lion tamarins.

[3]

(ii) On your food web, draw a circle around **one** producer.

[1]

(c) Golden lion tamarins are important for the dispersal of seeds from many different species of tree. They eat the fruits and then egest the seeds in their faeces.

For Examiner's Use

An investigation was carried out into the distances that golden lion tamarins dispersed seeds from trees.

Fig. 8.1 shows the results of a study in which the distances of the tamarins' faeces from one tree were measured.

Fig. 8.1

(i)	Describe the distribution of golden lion tamarin faeces in relation to this tree.
	[2]
(ii)	Suggest two ways in which the dispersal of seeds away from the tree, in golden lion tamarin faeces, could benefit the young plants that grow from the seeds.
	1
	2
	[2]

9 The manufacture of ammonia is an important industrial process.

For Examiner's Use

Fig. 9.1 is a simplified diagram of a reaction vessel which is used to make ammonia.

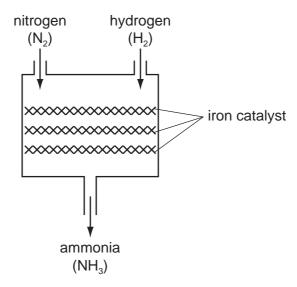


Fig. 9.1

(a) Ammonia is made by combining nitrogen and hydrogen.

(i)	Explain one difference between an <i>element</i> and a <i>compound</i> . You may use the substances as examples.	se
		[2]
(ii)	Describe a chemical test for ammonia gas.	
		[2]

(b)	Ammonia is used to make the compound ammonium nitrate. When it is added to soil, ammonium nitrate is a useful source of nitrogen for plants. Some of the nitrogen taken in by plants is combined with other elements to make amino acids.					
	(i)	Explain briefly why nitrogen gas from the air cannot be used directly by most plants.				
		[41]				
		[1]				
	(ii)	Suggest a compound that neutralises ammonia to produce ammonium nitrate.				
		[1]				
((iii)	Name the three other elements which are always combined with nitrogen in amino acids.				
		[2]				
((iv)	Describe briefly what happens to amino acid molecules when they form protein molecules.				
		[2]				
(c)	The	reaction between nitrogen and hydrogen requires an iron catalyst.				
	(i)	State what is meant by the term <i>catalyst</i> .				
		[2]				
	(ii)	State one reason why the catalyst in the reaction in Fig. 9.1 could not be made of the alkali metal sodium.				
		[1]				

DATA SHEET
The Periodic Table of the Elements

Group	0	4 He Helium	20 Neon 10 40 Ar Argon	84 Kr Krypton 36	131 Xe Xenon 54	Radon 86		Lutetium 77	Lr Lawrencium 103
	IIΛ		19 Fluorine 9 35.5 C 1 Chlorine	80 Br Bromine 35	127 I lodine 53	At Astatine 85		173 Yb Ytterbium 70	Nobelium 102
	IA		16 Oxygen 8 32 S Sulfur	Se Selenium 34	Te Tellurium	Po Polonium 84		169 Tm Thulium 69	Md Mendelevium 101
	^		14 Nitrogen 7 31 Phosphorus 15	AS Arsenic	Sb Antimony 51	209 Bi Bismuth 83		167 Er Erbium 68	Fm Fermium 100
	ΛΙ		12 Carbon 6 S Siicon 14	73 Ge Germanium	Sn Tin 50	207 Pb Lead Lead		165 Ho Holmium 67	Einsteinium
	Ξ		11 B Boron 5 27 A1 Auminium 13	70 Ga Gallium 31	115 In Indium 49	204 T t Thallium 81		162 Dy Dysprosium 66	Californium 98
				65 Zn Zinc 30	112 Cd Cadmium 48	201 Hg Mercury 80		159 Tb Terbium 65	BK Berkelium 97
				64 Copper 29	108 Ag Silver 47	197 Au Gold		157 Gd Gadolinium 64	Curium 96
				59 X Nickel 28	106 Pd Palladium 46	195 Pt Platinum 78		152 Eu Europium 63	Am Americium 95
			,	59 Co balt 27	103 Rh Rhodium 45	192 I r Iridium 77		Samarium 62	Pu Plutonium
		1 Hydrogen		56 Fe Iron 26	Ruthenium 44	190 Os Osmium 76		Pm Promethium 61	Neptunium
				Manganese 25	Tc Technetium 43	186 Re Rhenium 75		Neodymium 60	238 U Uranium 92
				52 Cr Chromium 24	96 Mo Molybdenum 42	184 W Tungsten 74		Pr Praseodymium 59	Pa Protactinium 91
				51 V Vanadium 23	93 Nb Niobium 41	181 Ta Tanalum		140 Cer ium 58	232 Tb Thorium
				48 Ti Titanium 22	91 Zr Zirconium 40	178 Ha fnium * 72			nic mass ibol nic) number
				Scandium 21	89 Y Yttrium 39	139 La Lanthanum 57 ,	227 AC Actinium 89	d series series	 a = relative atomic mass X = atomic symbol b = proton (atomic) number
	=		Be Beryllium 4 24 Magnesium 12	40 Ca Calcium	Strontium	137 Ba Barium 56	226 Ra Radium 88	*58-71 Lanthanoid series	т х в
	_		7	39 K	Rubidium 37	133 CS Caesium 55	Fr Francium 87	*58-71 L	Key

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.