

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

CO-ORDINATED SCIENCES

0654/21

Paper 2 (Core)

October/November 2010

2 hours

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs, tables or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO **NOT** WRITE IN ANY BARCODES.

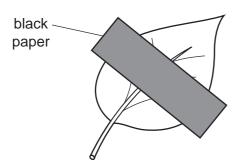
Answer all questions.

A copy of the Periodic Table is printed on page 28.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Exam	iner's Use
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
Total	


This document consists of 24 printed pages and 4 blank pages.

		+
(b)	(i)	Explain why plants need light for photosynthesis.
	(ii)	State two ways in which a plant leaf is adapted to obtain and use light photosynthesis.
		1
		_
		2
(c)	He He	tudent fixed a piece of black paper over a leaf, which was still attached to the plan left the plant in the sun for two days. then removed the leaf from the plant and tested it for starch, after removing t
(c)	He He bla	tudent fixed a piece of black paper over a leaf, which was still attached to the plan
(c)	He He bla	tudent fixed a piece of black paper over a leaf, which was still attached to the plan left the plant in the sun for two days. then removed the leaf from the plant and tested it for starch, after removing t ck paper.
(c)	He He bla	tudent fixed a piece of black paper over a leaf, which was still attached to the plan left the plant in the sun for two days. then removed the leaf from the plant and tested it for starch, after removing t ck paper. Use the letters given to list the correct sequence of the steps he took.
(c)	He He bla	tudent fixed a piece of black paper over a leaf, which was still attached to the plan left the plant in the sun for two days. then removed the leaf from the plant and tested it for starch, after removing t ck paper. Use the letters given to list the correct sequence of the steps he took. A Add iodine solution to the leaf.
(c)	He He bla	tudent fixed a piece of black paper over a leaf, which was still attached to the plan left the plant in the sun for two days. then removed the leaf from the plant and tested it for starch, after removing tok paper. Use the letters given to list the correct sequence of the steps he took. A Add iodine solution to the leaf. B Place the leaf in boiling water.

(ii) Fig. 1.1 shows the leaf before and after he did the starch test.

For Examiner's Use

before testing

after testing

Fig. 1.1

Complete the diagram of the leaf after testing in Fig. 1.1. Do **not** colour the diagram.

Use labels to show which parts would look orange-brown and which parts would look blue-black. [2]

2 Fig. 2.1 shows the apparatus a student used to study the rate of reaction between some powdered metal and dilute hydrochloric acid.

For Examiner's Use

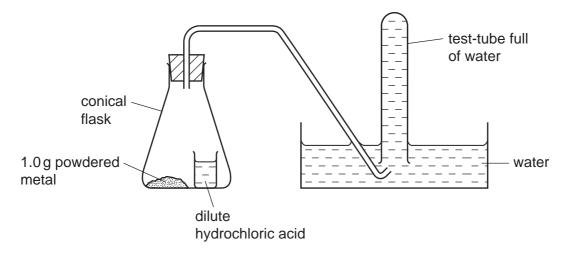


Fig. 2.1

When the student tilted the conical flask, the acid mixed with the powdered metal. If a reaction occurred, any gas which was produced collected in the test-tube, pushing the water out. The student measured the time taken for the test-tube to fill with gas.

The student used the apparatus and method described above to compare the rates of reaction between dilute hydrochloric acid and three powdered metals, **X**, **Y** and **Z**.

The results the student obtained are shown in Table 2.1.

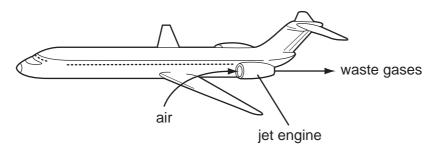
Table 2.1

metal	mass of metal/g	time for gas to fill the test-tube/seconds
x	1.0	150
Y	1.0	45
Z	1.0	no gas was produced

(a)	(i)	Name the ga	as produced	when	metals	X	and	Υ	reacted	with	dilute	hydrochloric
		acid.										

		[1]
(ii)	Describe the test you would carry out to identify this gas.	
		[1]

(iii)	Suggest and explain which metal, X , Y or Z , could have been copper.
		metal
		explanation
		[1]
(iv)	The student repeated the experiment with metal X but this time she used a single piece of metal weighing 1.0 g.
		State and explain how the rate of reaction would differ from the experiment in which 1.0 g of powdered metal was used.
		[2]
(b)		nother experiment, the student added powdered zinc to dilute sulfuric acid. When the bling stopped, there was still some powdered zinc left at the bottom of the solution.
	(i)	Explain why the bubbling eventually stopped even though some zinc powder remained.
		[1]
	(ii)	Name the salt which was left in the solution at the end of the reaction.
		[1]


(c)	nitro	areas where pollution is very low, rain falls through air which contains the gas ogen, oxygen and carbon dioxide. emical weathering may occur when rainwater flows over rocks.	ses
	(i)	Explain why rainwater which falls through unpolluted air has a pH which is slightless than 7.	ntly
			[2]
	(ii)	Describe one advantage to plants of the chemical weathering of rocks.	
			[2]

3

(a)	(a) Complete the sentences by choosing words from the list. Each word may be use once, more than once or not at all.						
	expansion	gas	heat	liqui	d		
	longitu	dinal m	ovement	quickly			
	slowly	transverse	vacuu	ım wave	е		
		wave. S	Sound travels thro	ugh a material by th	e		
		of its particles.					
	In a solid the particles	s are close together, so	sound travels mo	re			
	than it does in a gas.	Sound cannot travel thr	ough a				
	because there are no	particles present.			[4]		
(b)	•	mobile phone (cell phone).					
		containing a ba					
		Fig. 3.1					
	State the energy cha	nge that takes place wh	en the battery is b	eing charged.			
		energy into		energy	[1]		
(c)	Radio waves and visi	ble light are forms of ele	ectromagnetic rad	iation.			
	(i) Name one other	form of electromagnetic	radiation.				
	(ii) Give one use for	the form of electromage	netic radiation vol	ı have named in (i).	[1]		
	.,		, , ,	(7)			

In jet engines, hydrocarbon molecules from the jet fuel mix with air and burn. This releases a large amount of energy and produces a mixture of waste gases. These waste gases pass out through the back of the jet engine into the atmosphere.

For Examiner's Use

(a) Fig. 4.1 shows a molecule of octane, which is a typical hydrocarbon molecule in jet fuel.

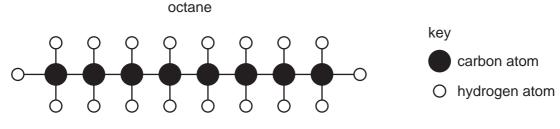


Fig. 4.1

(i)	State the chemical formula of octane.	[1	1
` '		 •	-

(ii) Complete the word equation below for the complete combustion of octane.

octane	+		\rightarrow		+	
--------	---	--	---------------	--	---	--

[2]

(iii) Explain why the mixture of gases coming from the rear of the jet engine contains a large amount of nitrogen.

[2]

(iv) Explain why the metallic parts of the jet engine become hot when it is working.

(b)	(i)	A carbo	on atom has a proton (a	atomic) number 6 ar	nd a nucleon (mass) number 12.	For Examiner's					
		State the number of neutrons and electrons in this carbon atom.										
		number of neutrons										
		number of electrons [2]										
	(ii)		he chemical symbol of c Table as carbon.	another element w	which is in the same	e group in the						
						[1]						
(c) Table 4.1 shows information about some metallic materials.												
				Table 4.1								
			material	strength	density							
			mild steel	very high	very high							
			aluminium	low	low							
			duralumin (an aluminium alloy)	very high	low							
	(i)	Describ	oe briefly how aluminiu	m and an alloy of al	uminium differ in co	mposition.						
						[1]						
	(ii)	Duralu	min is used in the manu	ufacture of aircraft.								
		Explain	why the properties of	this material make i	t suitable for this pu	ırpose.						
						[2]						

5 (a) Complete the sentences about the human nervous system, using some of the words in the list.

		biceps	brain	detectors	effectors	
		ne	rves	r	receptors	
	call	ed		onvert the stimul	ernal stimuli. These cells and lus into electrical impulses the central nervous system.	
		•			the body that respond to the	e [3]
(b)		en we smell food, t Saliva contains the			_	
	<i>a</i> n					[2]
	(ii)		•		t we eat to be digested.	
,	(iii)	Describe how fo swallowed it.	ood is moved th	rough the alime	entary canal, after we ha	[2] ave
						[2]

Please turn over for Question 6.

6 Fig. 6.1 shows a rock of mass 2 kg that is falling from the top of a cliff into the river below.

For Examiner's Use

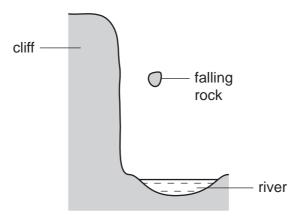


Fig. 6.1

(a) Fig. 6.2 is the speed-time graph for the motion of the rock.

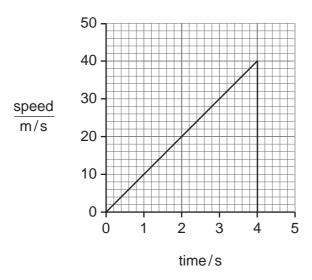


Fig. 6.2

- (i) State the maximum speed of the rock. m/s [1]
- (ii) Use your answer to (i) to calculate the kinetic energy of the rock as it hits the water.

State the formula that you use and show your working.

formula used

working

J [2]

(b)	the	observer on the top of the cliff measured the time between when he saw the rock hit water and when he heard the sound of the splash. This time was 0.25 s. speed of sound in air is 330 m/s.	For Examiner's Use
	Cald	culate the height of the cliff.	
	Stat	e the formula that you use and show your working.	
		formula used	
		working	
		m m [2]	
(c)	The	rock has a mass of 2000 g and a volume of 700 cm ³ .	
	Cald	culate the density of the rock.	
	Stat	e the formula that you use and show your working.	
	Stat	te the units of your answer.	
		formula used	
		working	
		[3]	
(d)	The	rock contains radioactive substances emitting high levels of ionising radiation.	
	(i)	State how the radioactivity could be detected.	
		[1]	
	(ii)	Explain why it would be dangerous for a person to handle this rock without proper protection.	
		[1]	

7 The gray wolf, *Canis lupus*, is a predator that lives in North America. Fig. 7.1 shows a gray wolf.

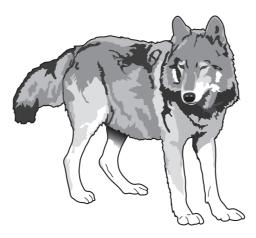


Fig. 7.1

(a)	State one feature, visible on Fig. 7.1, which shows that the gray wolf is a mammal.	
		[1]
(b)	The binomial for the gray wolf is <i>Canis lupus</i> . Another dog-like animal that lives North America is the coyote, <i>Canis latrans</i> .	in
	What do these binomials tell us about the relationship between gray wolf and coyote?	the
		•••••
		[2]

(c)		Nisconsin, Canada, the wolves' diet consists mainly of white-tailed deer, beavers, I snowshoe hares.	For Examiner's Use
	The	ese all eat plants.	
	(i)	Construct a food web including all the organisms mentioned above.	
		[3]	
	(ii)	State what the arrows in your food web represent.	
		[1]]
	(iii)	With reference to your answers to (i) and (ii), suggest why wolves are rarer than	1
	. ,	white-tailed deer.	
		[2]

(d) People used to shoot gray wolves. In 1978, a conservation programme for gray wolves began in Wisconsin and people were no longer allowed to shoot them.

For Examiner's Use

The main causes of death of wolves are disease, starvation and accidents such as collisions with vehicles.

Fig. 7.2 shows the size of the gray wolf population in Wisconsin between 1986 and 2010. It also shows the predicted wolf population if the conservation programme is successful.

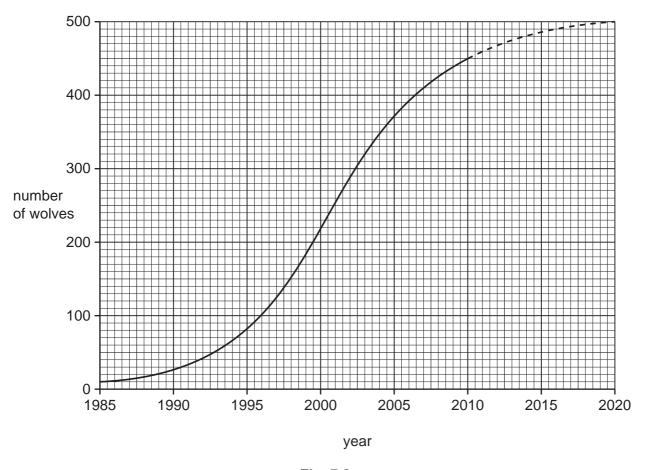


Fig. 7.2

(i)	Suggest why the population of gray wolves in Wisconsin is not expected to increase beyond about 500 individuals, even if they are no longer killed by humans.	For Examiner's Use
	[2]	
(ii)	Some people in Wisconsin are opposed to the wolf conservation programme. Explain why it is important to conserve species such as the gray wolf.	
	[2]	

18 8 Fig. 8.1 shows an electric heater being used to heat up 0.5 kg of water in a beaker. to power supply beaker heater of water Fig. 8.1 (a) What is the main process by which energy is transferred through the water? **(b)** The specific heat capacity of the water is 4200 J/kg °C. (i) Explain what is meant by the term specific heat capacity. (ii) The electrical energy supplied to the heater in 10 minutes was 70 000 J. Calculate the power supplied to the heater. State the formula that you use and show your working. formula used working

For Examiner's Use

[2]

(c)		e electrical energy for the heater has been generated by burning a fossil fuel in ver station.	n a	For Examiner's Use
	(i)	Name one suitable fossil fuel.	[1]	
	(ii)	Describe one problem with the burning of fossil fuels to generate electricity.		
			 [1]	
	(iii)	State one alternative energy resource to fossil fuels, which could have been us to generate the electricity.	sed	
			[1]	

9	(a)	Cop	opper metal reacts with oxygen gas to form copper oxide.						
		Sta	tate why this reaction is an example of oxidation.						
		•••••				[1]			
	(b) Table 9.1 shows information about two different types of copper oxide.								
	Table 9.1								
name colour chemical formula									
		copper(II) oxide		black	CuO				
			copper(I) oxide	red	Cu ₂ O				
		(i)	Describe briefly the diff copper oxide.	erence in chemical com	position of these two typ	es of			
						[2]			
		(ii)	Copper is a transition me	tal.					
			State one property, show	n in Table 9.1, which is ty	pical of transition metals.				
						[1]			

(c) Fig. 9.1 shows apparatus used in the electrolysis of copper chloride solution.

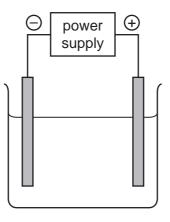


Fig. 9.1

(i)	On the diagram, clearly label the anode and the electrolyte .	[2]
(ii)	Copper chloride solution is a mixture of copper ions and chloride ions in water.	
	State briefly one difference between a chlorine atom and a chloride ion.	
		[1]
(iii)	When the electrolysis reaction in Fig. 9.1 is occurring, bubbles of gas appear at surface of the anode.	the
	Describe a safe test and its result to confirm that this gas is chlorine.	
		[2]
(iv)	Name the substance which forms at the cathode.	
		[1]

10 (a) A student investigated the relationship between the potential difference across a lamp and the current passing through it.

For Examiner's Use

She used the following apparatus: ammeter

connecting wires

lamp

power supply voltmeter

(i) Draw a suitable circuit diagram for this investigation.

[4]

The graph in Fig. 10.1 shows her results.

For Examiner's Use

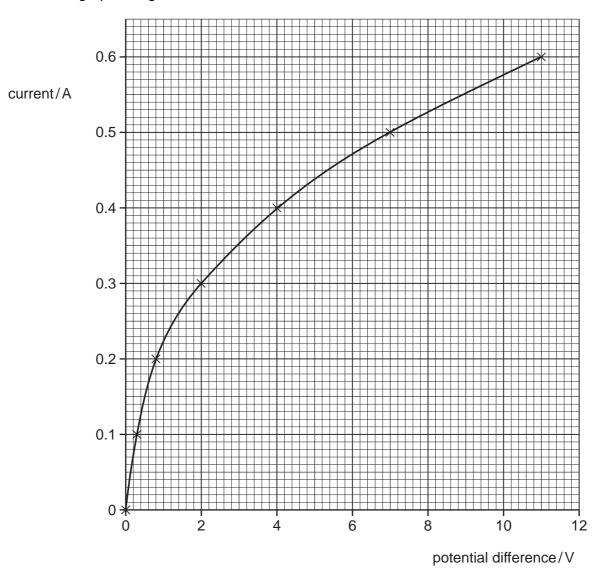


Fig. 10.1

(ii)	What is the	current when	the potential	difference	is 6 V?
------	-------------	--------------	---------------	------------	---------

......A [1]

(iii) Calculate the resistance of the lamp when the potential difference is $6\,\mathrm{V}.$

State the formula that you use and show your working.

formula used

working

ohms [2]

(b)		student was given two bar magnets and a bar of soft iron. She carried out the illowing experiments.						
	(i)	She b	prought the mag	gnets close toget	her with opposite	poles facing.		
			N	S	N	S		
		State	what she obse	rved.				
							[1]	
	(ii)	She b	prought the mag	gnets close toget	her with like poles	s facing.		
			N	S	S	N		
		State	what she obse	rved.				
							[1]	
((iii)	She b	prought the soft	iron bar towards	one of the magn	ets.		
			N	S	iron ba	r		
		State	what she obse	rved.				
							[1]	

DATA SHEET
The Periodic Table of the Elements

	0	4 He Helium	20 Neon 10 40 Ar Argon	84 Kry Krypton 36	131 Xe Xenon 54	Radon 86		Lutetium 77	Lr Lawrencium 103
	IIΛ		19 Fluorine 9 35.5 C 1 Chlorine	80 Br Bromine 35	127 I lodine 53	At Astatine 85		173 Yb Ytterbium 70	Nobelium 102
	IA		16 Oxygen 8 32 S Sulfur	Se Selenium 34	Te Tellurium	Po Polonium 84		169 Tm Thulium 69	Md Mendelevium 101
	^		14 Nitrogen 7 31 Phosphorus 15	AS Arsenic	Sb Antimony 51	209 Bi Bismuth 83		167 Er Erbium 68	Fm Fermium 100
	ΛΙ		12 Carbon 6 28 Si Siicon 14	73 Ge Germanium 32	119 Sn Tin	207 Pb Lead Lead		165 Ho Holmium 67	Einsteinium 99
	Ξ		11 B Boron 5 27 A1 Auminium 13	70 Ga Gallium 31	115 In Indium 49	204 T t Thallium 81		162 Dy Dysprosium 66	Californium 98
				65 Zn Zinc 30	112 Cd Cadmium 48	201 Hg Mercury 80		159 Tb Terbium 65	BK Berkelium 97
				64 Copper 29	108 Ag Silver 47	197 Au Gold		157 Gd Gadolinium 64	Curium 96
Group				59 X Nickel 28	106 Pd Palladium 46	195 Pt Platinum 78		152 Eu Europium 63	Am Americium 95
Gr			,	59 Co Cobalt 27	103 Rh Rhodium 45	192 I r Iridium 77		Samarium 62	Pu Plutonium
		1 Hydrogen		56 Fe Iron 26	Ruthenium 44	190 Os Osmium 76		Pm Promethium 61	Neptunium
				Manganese 25	Tc Technetium 43	186 Re Rhenium 75		Neodymium 60	238 U Uranium 92
				52 Cr Chromium 24	96 Mo Molybdenum 42	184 W Tungsten 74		Pr Praseodymium 59	Pa Protactinium 91
				51 V Vanadium 23	93 Nb Niobium 41	181 Ta Tantalum		140 Cer ium 58	232 Tb Thorium
				48 Ti Titanium	91 Zr Zirconium 40	178 Ha fnium * 72			nic mass ibol nic) number
				45 Scandium 21	89 Y Yttrium 39	139 La Lanthanum 57 **	227	d series series	 a = relative atomic mass X = atomic symbol b = proton (atomic) number
	=		Be Beryllium 4 24 Magnesium 12	40 Ca Calcium	Strontium	137 Ba Barium 56	226 Ra Radium 88	*58-71 Lanthanoid series	т х в
	_		7 Lithium 3 23 Na Sodium 11	39 K Potassium	Rb Rubidium	133 Cs Caesium 55	Fr Francium 87	*58-71 L	Key

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.