No one knows where iron was first isolated. It appeared in China, the Middle East and in Africa. It was obtained by reducing iron ore with charcoal.

(a) Complete the following equation.

\[
\text{Fe}_2\text{O}_3 + \text{C} \rightarrow \text{...................} + \text{...................}
\]

(b) In 1705 Abraham Darby showed that iron ore could be reduced using coke in a blast furnace.

(i) The temperature in the furnace rises to 2000 °C. Write an equation for the exothermic reaction that causes this high temperature.

...

(ii) In the furnace, the ore is reduced by carbon monoxide. Explain how this is formed.

...

...

(c) The formation of slag removes an impurity in the ore. Write a word equation for the formation of the slag.

...
(d) Stainless steel is an alloy of iron. It contains iron, other metals and about 0.5% of carbon.

(i) State a use of stainless steel.

...

(ii) Name a metal, other than iron, in stainless steel.

...

(iii) The iron from the blast furnace is impure. It contains about 5% of carbon and other impurities, such as silicon and phosphorus. Describe how the percentage of carbon is reduced and the other impurities are removed.

...

...

...[6]

(e) One of the methods used to prevent iron or steel from rusting is to electroplate it with another metal, such as tin. Complete the following.

The anode is made of

The cathode is made of

The electrolyte is a solution of

...[3]
Calcium and other minerals are essential for healthy teeth and bones. Tablets can be taken to provide these minerals.

Healthy Bones

Each tablet contains

- calcium
- magnesium
- zinc
- copper
- boron

(a) Boron is a non-metal with a macromolecular structure.

(i) What is the valency of boron?

..

(ii) Predict two physical properties of boron.

..

..

(iii) Name another element and a compound that have macromolecular structures.

element

compound

(iv) Sketch the structure of one of the above macromolecular substances.
(b) Describe the reactions, if any, of zinc and copper(II) ions with an excess of aqueous sodium hydroxide.

(i) zinc ions

addition of aqueous sodium hydroxide ..
..

excess sodium hydroxide ..
...

(ii) copper(II) ions

addition of aqueous sodium hydroxide ..
...

excess sodium hydroxide ..
...

(c) Each tablet contains the same number of moles of CaCO₃ and MgCO₃. One tablet reacted with excess hydrochloric acid to produce 0.24 dm³ of carbon dioxide at r.t.p.

\[
\text{CaCO}_3 + 2\text{HCl} \rightarrow \text{CaCl}_2 + \text{CO}_2 + \text{H}_2\text{O} \\
\text{MgCO}_3 + 2\text{HCl} \rightarrow \text{MgCl}_2 + \text{CO}_2 + \text{H}_2\text{O}
\]

(i) Calculate how many moles of CaCO₃ there are in one tablet.

number of moles CO₂ =

number of moles of CaCO₃ and MgCO₃ =

number of moles of CaCO₃ =

(ii) Calculate the volume of hydrochloric acid, 1.0 mol / dm³, needed to react with one tablet.

number of moles of CaCO₃ and MgCO₃ in one tablet =

Use your answer to (c)(i).

number of moles of HCl needed to react with one tablet =

volume of hydrochloric acid, 1.0 mol / dm³, needed to react with one tablet =

[2]
3 Alkenes are unsaturated hydrocarbons. They undergo addition reactions.

(a) Two of the methods of making alkenes are cracking and the thermal decomposition of chloroalkanes.

(i) Complete an equation for the cracking of the alkane, decane.

\[\text{C}_{10}\text{H}_{22} \rightarrow \text{.............................} + \text{.............................} \]

decane

(ii) Propene can be made by the thermal decomposition of chloropropane. Describe how chloropropane can be made from propane.

reagents propane and
conditions ... [4]

(b) The following alkenes are isomers.

\[\text{CH}_3\text{--CH}_2\text{--CH}=\text{CH}_2 \quad \text{CH}_3\text{--C}=\text{CH}_2 \]

(i) Explain why they are isomers.

...
...

(ii) Give the name and structural formula of another hydrocarbon that is isomeric with the above.

name ..
structural formula
(c) Give the name of the product when but-1-ene reacts with each of the following.

steam ...
hydrogen ..
bromine ..

(d) Alkenes can polymerise.

(i) Deduce the name and structural formula of the monomer from the structure of the polymer.

\[
\begin{array}{c}
\text{H} \\
\text{C} \\
\text{H}_3
\end{array}
\]

name of monomer ..
structural formula

(ii) Draw the structure of the polymer formed from the following monomer.

\[
\begin{array}{c}
\text{H} \\
\text{C} \\
\text{H}_3
\end{array}
\]
(iii) Describe the pollution problems caused by the disposal of polymers in landfill sites and by burning.

landfill sites ...[2]

burning ..[1]

4 Nitrogen dioxide, NO₂, is a dark brown gas.

(a) Most metal nitrates decompose when heated to form the metal oxide, nitrogen dioxide and oxygen.

(i) Write a symbol equation for the decomposition of lead(II) nitrate.

\[\text{Pb(NO}_3\text{)}_2 \rightarrow \ldots + \ldots + \ldots \] [2]

(ii) Potassium nitrate does not form nitrogen dioxide on heating. Write the word equation for its decomposition.

...[1]

(b) When nitrogen dioxide is cooled, it forms a yellow liquid and then pale yellow crystals. These crystals are heated and the temperature is measured every minute. The following graph can be drawn.

![Graph](https://via.placeholder.com/150)

(i) Describe the arrangement and movement of the molecules in the region A–B.

...
(ii) Name the change that occurs in the region B–C
...[4]

(c) Nitrogen dioxide and other oxides of nitrogen are formed in car engines.

(i) Explain how these oxides are formed.
...
...

(ii) How are they removed from the exhaust gases?
...
...
...[4]

(d) Nitrogen dioxide, oxygen and water react to form dilute nitric acid.
Describe how lead(II) nitrate crystals could be prepared from dilute nitric acid and lead(II) oxide.
...
...
...[3]
5 The first three elements in Period 6 of the Periodic Table of the Elements are caesium, barium and lanthanum.

(a) How many more protons, electrons and neutrons are there in one atom of lanthanum than in one atom of caesium. Use your copy of the Periodic Table of the Elements to help you.

<table>
<thead>
<tr>
<th>Protons</th>
<th>Electrons</th>
<th>Neutrons</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(b) All three metals can be obtained by the electrolysis of a molten halide. The electrolysis of the aqueous halides does not produce the metal.

(i) Complete the equation for the reduction of lanthanum ions at the negative electrode (cathode).

\[\text{La}^{3+} + \text{.................} \rightarrow \text{...............} \]

(ii) Name the three products formed by the electrolysis of aqueous caesium bromide.

..
...

(c) All three metals react with cold water. Complete the word equation for these reactions.

\[\text{metal} + \text{water} \rightarrow \text{.........................} + \text{.........................} \]

(d) Barium chloride is an ionic compound. Draw a diagram that shows the formula of the compound, the charges on the ions and gives the arrangement of the valency electrons around the negative ion.

The electron distribution of a barium atom is 2.8.18.18.8.2

Use x to represent an electron from a barium atom.
Use o to represent an electron from a chlorine atom.
(e) Describe, by means of a simple diagram, the lattice structure of an ionic compound, such as caesium chloride.

(f) The reactions of these metals with oxygen are exothermic.

\[2\text{Ba(s)} + \text{O}_2(\text{g}) \rightarrow 2\text{BaO(s)} \]

(i) Give an example of bond forming in this reaction.

(ii) Explain using the idea of bond breaking and forming why this reaction is exothermic.
DATA SHEET
The Periodic Table of the Elements

<table>
<thead>
<tr>
<th>Group</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
<th>VII</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hydrogen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>He</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Li</td>
<td>6</td>
<td>10</td>
<td>14</td>
<td>15</td>
<td>20</td>
<td>21</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>Lithium</td>
<td>9</td>
<td>12</td>
<td>16</td>
<td>17</td>
<td>22</td>
<td>23</td>
<td>24</td>
</tr>
<tr>
<td>4</td>
<td>Be</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>B</td>
<td>13</td>
<td>17</td>
<td>21</td>
<td>25</td>
<td>30</td>
<td>31</td>
<td>32</td>
</tr>
<tr>
<td>6</td>
<td>C</td>
<td>12</td>
<td>16</td>
<td>20</td>
<td>24</td>
<td>29</td>
<td>30</td>
<td>31</td>
</tr>
<tr>
<td>7</td>
<td>N</td>
<td>14</td>
<td>18</td>
<td>22</td>
<td>26</td>
<td>31</td>
<td>32</td>
<td>33</td>
</tr>
<tr>
<td>8</td>
<td>O</td>
<td>15</td>
<td>19</td>
<td>23</td>
<td>27</td>
<td>32</td>
<td>33</td>
<td>34</td>
</tr>
<tr>
<td>9</td>
<td>F</td>
<td>16</td>
<td>20</td>
<td>24</td>
<td>28</td>
<td>33</td>
<td>34</td>
<td>35</td>
</tr>
<tr>
<td>10</td>
<td>Ne</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Na</td>
<td>11</td>
<td>15</td>
<td>19</td>
<td>23</td>
<td>28</td>
<td>29</td>
<td>30</td>
</tr>
<tr>
<td>12</td>
<td>Mg</td>
<td>12</td>
<td>16</td>
<td>20</td>
<td>24</td>
<td>29</td>
<td>30</td>
<td>31</td>
</tr>
<tr>
<td>13</td>
<td>Al</td>
<td>13</td>
<td>17</td>
<td>21</td>
<td>25</td>
<td>30</td>
<td>31</td>
<td>32</td>
</tr>
<tr>
<td>14</td>
<td>Si</td>
<td>14</td>
<td>18</td>
<td>22</td>
<td>26</td>
<td>31</td>
<td>32</td>
<td>33</td>
</tr>
<tr>
<td>15</td>
<td>P</td>
<td>15</td>
<td>19</td>
<td>23</td>
<td>27</td>
<td>32</td>
<td>33</td>
<td>34</td>
</tr>
<tr>
<td>16</td>
<td>S</td>
<td>16</td>
<td>20</td>
<td>24</td>
<td>28</td>
<td>33</td>
<td>34</td>
<td>35</td>
</tr>
<tr>
<td>17</td>
<td>Cl</td>
<td>17</td>
<td>21</td>
<td>25</td>
<td>29</td>
<td>34</td>
<td>35</td>
<td>36</td>
</tr>
<tr>
<td>18</td>
<td>Ar</td>
<td>18</td>
<td>22</td>
<td>26</td>
<td>30</td>
<td>35</td>
<td>36</td>
<td>37</td>
</tr>
</tbody>
</table>

Key
a = relative atomic mass
b = proton (atomic number)

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).