

General Certificate of Secondary Education June 2012

Mathematics
43603H
Higher
Unit 3

Final

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk

Copyright © 2012 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the school/college.

UMS conversion calculator www.aqa.org.uk/umsconversion

The following abbreviations are used on the mark scheme:

M Method marks awarded for a correct method.
M dep A method mark which is dependent on a previous method mark being awarded.

A Accuracy marks awarded when following on from a correct method. It is not necessary always to see the method. This can be implied.

B Marks awarded independent of method.
Q Marks awarded for Quality of Written Communication
ft Follow through marks. Marks awarded for correct working following a mistake in an earlier step.

SC Special Case. Marks awarded for a common misinterpretation which has some mathematical worth.
oe \quad Or equivalent.
$[\boldsymbol{a}, \boldsymbol{b}] \quad$ Accept values between a and b inclusive.

UNIT 3 HIGHER TIER
 43603H

1	$2 x+3 x+4 x=180$	M1	$180 \div(2+3+4)$ or 180 seen and one trial worked out correctly eg $2 \times 5+3 \times 5+4 \times 5=45$
	$9 x=180$ or $x=20$	M1 dep	$180 \div 9(\times 2)$ or a different trial worked out correctly
40	A1		
	Q1	Steps in setting up and solving equation clearly shown	Dependent on both method marks scored from an algebraic method

2a	$-4,-3$ and 5 All three in correct position in table	B2 ft	B1 one correct in correct position

2 b	Their seven points plotted	B2 ft	$\pm \frac{1}{2}$ square B1 for 5 or 6 points correct
	Six or seven points joined by smooth curve	B1 ft	Must be $\mathrm{a} U$ shape

2c	Line drawn at $y=2$	B1	

2d	$(x=)-2.45$	B1 ft	ft their graphs $\pm \frac{1}{2}$ square Accept [-2.6, -2.3] Accept $-\sqrt{6}$
	$(x=) 2.45$	B1 ft	ft their graphs $\pm \frac{1}{2}$ square Accept [2.3, 2.6] Accept $\sqrt{6}$ Note: if coordinates are given mark the x coordinates only Award B1 B0 if both x coordinates are correct.

3	$\frac{55}{100} \times 3.8(=2.09 \text { or } 2.1)$	M1	oe
	$6 \times 5 \div$ their 2.09 (= 14.3...)	M1 dep	$\begin{aligned} & \text { Two of: } \\ & 14 \times 2.09=29.26 \\ & 15 \times 2.09=31.35 \\ & 30 \end{aligned}$
	14	A1 ft	Must be rounded down from their 14.3(...) ft only if $2^{\text {nd }}$ method mark not awarded SC1 for rounding down if no method marks have been awarded

4	12×4	M1	oe Correct enlargement SF2 drawn
	48	A 1	
$\mathrm{~cm}^{2}$	B 1		

5	Any indication that all sides equal 5.2	M1	7×5.2 or 9×5.2 or 10×5.2 5.2 labelled on one sloped side of shape
	8×5.2	M1 dep	
41.6	A1		

6 a	$55+180$	M1	
	235	A1	

6b	Valid reason	B1	eg $180+180=360$ $($ so cannot be greater than 180) $190+180=370$ (impossible) max possible 360 $180 \times 2=360$

$\begin{array}{|c|l|c|l|}\hline 6 c & 342-180 & \text { M1 } & \begin{array}{l}180-18 \\ \text { or } \\ 360-342(=18)\end{array} \\$\cline { 2 - 4 } \& 162 \& And $\left.180-\text { their } 18\end{array}\right]$

7	$\left(A B^{2}=\right) 9^{2}+7^{2}(=130)$	M 1	$A=\tan ^{-1}(7 / 9)$ or $B=\tan ^{-1}(9 / 7)$
	$\sqrt{9^{2}+7^{2}}$ or $\sqrt{\text { their } 130}$	M1 dep	$\frac{7}{\sin 37.87}$ or $\frac{9}{\cos 37.87}$ oe
	$11.4(\ldots)$	A 1	

8	$w+40=72$	M1	May be on diagram
	$(w=) 32$ seen	A1	
	$2 w=64 \text { or } 2 w=2 \times \text { their } 32$ or third angle $=72$	M1	or $2 w+t+72=180$ oe
	$180-72-64$ or $180-72-$ their 32×2	M1	oe 108-64
	44	A1	

9	Vertices at $(0,1)(2,0)(0,-2)$	B2	B1 for any 90° rotation

10	$\pi \times 3^{2}(\div 2)(=14.137)$	M1	[28.2, 28.4], [14.1, 14.2]
	$15 \times 10 \text { - their } \pi \times 3^{2} \div 2$ $\text { or } 150 \text { - their } 14.137$	M1 dep	[135.8, 135.9]
	their $135.86 \div 0.3$	M1	$\begin{aligned} & \text { Their area } \div 0.3 \\ & {[452,453]} \end{aligned}$
	452 or allow 453	A1	Must be a whole number SC3 for $[311,312]$ from use of $r=6$
	Correct method clearly shown	Q1	Strand (iii) M3 awarded

11 a	$\frac{x}{y}=\frac{5}{2}$ or $2 x=5 y$	B1	oe Need not be in simplest form eg Allow $x=2 y+\frac{y}{2}$ $\frac{x}{2.5}=y$

11 b	$x+x+y+y$ or $2 x+2 y$ or $2(x+y)$	B1	oe Any order

11 c	$x+x+$ their $\frac{2}{5} x+$ their $\frac{2}{5} x$	M1	oe
	$\frac{14}{5} x$ or $2.8 x$	A1	oe

12	Identification of cosine	M 1	$\frac{\sin P}{12}=\frac{\sin 90}{15}$	$\sin Q=\frac{9}{15}$
	$\cos P=\frac{9}{15}$	M1 dep	$\sin P=\frac{12}{15}(\sin 90)$ oe	$90-\sin ^{-1}\left(\frac{9}{15}\right)$ oe
	$53(.1 \ldots)$	A 1		

13	$5 x+1=2 x+3+7$	B 1	oe
	$5 x-2 x=3+7-1$	M 1	oe Collecting terms from their linear equation using $5 x+1$ and $2 x+3$
$3 x=9$ or $x=3$	A 1 ft	Their 3 must be positive to ft $(5 \times$ their $3+1) \times(2 \times$ their $3+3)$ \times their 3 their $16 \times$ their $9 \times$ their 3	M 1
Using $x\left(10 x^{2}+2 x+15 x+3\right)$ i.e. their $\left(3 \times\left(10 \times 3^{2}+17 \times 3+3\right)\right)$ or their 3×144			
432	A1		

14 a	$180-118$ or 62 seen	M1	May be on diagram 118×2
	their 62×2	M1 dep	$360-$ their (118×2)
	124	A1	May be on diagram

14b
Opposite angles in a cyclic
quadriateral total 180 or exterior
angle of cyclic quad = opposite
interior angle

B1 $\quad \begin{aligned} & \text { Reflex AOD }=236 \\ & 236 \div 2=118 \\ & \text { oe }\end{aligned}$

15	$\frac{-4 \pm \sqrt{4^{2}-4 \times 3 \times-10}}{2 \times 3}$	M1	Allow one error
	$\begin{aligned} & \frac{-4 \pm \sqrt{4^{2}-4 \times 3 \times-10}}{2 \times 3} \\ & \text { or }(-4 \pm \sqrt{136}) \div 6 \end{aligned}$	M1 dep	Fully correct oe
	$(x=) 1.3$ and -2.6	A1	

16 a	$M \propto r^{3}$ or $M \div r^{3}=\mathrm{k}$ or $M=r^{3} \times \mathrm{k}$	M 1	Accept any letter for k
$200=\mathrm{k} \times 5^{3}$ or $(\mathrm{k}=) \frac{200}{5^{3}}$ or $\mathrm{k}=1.6$	M1 dep	oe	
$8^{3} \times \frac{200}{5^{3}}$	M 1	oe $8^{3} \times$ their 1.6 or $8^{3} \times$ their k	
819.2 or 819	A 1		

16b	$3125=r^{3} \times$ their $\frac{200}{5^{3}}$	M1	Accept $3125=r^{3} \times$ their 1.6
	$\sqrt[3]{\frac{5^{3} \times 3125}{200}}(=r)$	M1 dep	Accept $\sqrt[3]{\frac{3125}{\text { their } 1.6}}$ or $\sqrt[3]{1953.125}$
	12.5	A1	

17	60° seen	B1	Could be seen in calculation or on diagram
	$\frac{60}{360} \times 2 \times \pi \times 8$	M1	oe
	$8.3(7 \ldots)$	A1	$[8.3,8.4]$ Allow $\frac{8}{3} \pi$

18	$\begin{aligned} & \cos 57=\frac{A D}{9} \quad \text { or } \quad \sin 57=\frac{A B}{9} \\ & \text { seen } \end{aligned}$	M1	oe Note: $A D=9 \cos 57$ or $\sqrt{9^{2}-(9 \sin 57)^{2}}$ or 4.9... $A B=9 \sin 57$ or $\sqrt{9^{2}-(9 \cos 57)^{2}}$ or 7.5...
	$\frac{1}{2} \times 9 \cos 57 \times 9 \sin 57$	M1 dep	oe Area of right-angled triangle
	[18.3, 18.8]	A1	
	$\frac{9}{\sin (180-82)} \times \sin 39(=5.71 \ldots)$ or $\frac{9}{\sin (180-82)} \times \sin 43(=6.198 . .)$	M1	Calculating length of CD or equiv calc using sine rule for BC
	$\frac{1}{2} \times 9 \times$ their $5.7 \times \sin 43$ or $\frac{1}{2} \times 9 \times$ their $6.198 \times \sin 39$ or $\frac{1}{2} \times$ their $5.7 \times$ their $6.198 \times$ $\sin 98$	M1 dep	
	[17.4, 17.6]	A1	
	[35.7, 36.4]	A1	Award 7 marks if all 3 answers are in range unless there is clear evidence of incorrect working

19 a	$\frac{3}{2} \mathbf{s}$	B1	Accept $1 \frac{1}{2} \mathbf{s}$ or $1.5 \mathbf{s}$ or $3 \mathbf{s} \div 2$ or $\mathbf{s}+0.5 \mathbf{s}$ or $\mathbf{s}+\frac{1}{2} \mathbf{s}$

19 b	$-\mathbf{s}+\mathbf{t}+$ their $1.5 \mathbf{s}$	M 1	
	$\mathbf{t}+0.5 \mathbf{s}$	A 1 ft	oe ft their part (a)

