

General Certificate of Secondary Education June 2012

Mathematics
43602H
Higher
Unit 2

Final

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk

Copyright © 2012 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the school/college.

UMS conversion calculator www.aqa.org.uk/umsconversion

The following abbreviations are used on the mark scheme:

M Method marks awarded for a correct method.
M dep A method mark which is dependent on a previous method mark being awarded.

A Accuracy marks awarded when following on from a correct method. It is not necessary always to see the method. This can be implied.

B Marks awarded independent of method.
ft Follow through marks. Marks awarded for correct working following a mistake in an earlier step.

SC Special Case. Marks awarded for a common misinterpretation which has some mathematical worth.
oe \quad Or equivalent.
$[\boldsymbol{a}, \boldsymbol{b}] \quad$ Accept values between a and b inclusive.

UNIT 2 HIGHER TIER

1 a	48	B1	
1 b $14(+) 20(+) 10$ M1 oe Allow one error 44 A1 SC1 for 45 1 c E to F B1 Steepest (gradient) B1 oe			

			B2 for any two of $600,50,200$ B1 for any one of $600,50,200$ or for sight of $2 / 3$ or $3 / 2$ or $2: 3$
or $3: 2$ oe			
accept $66 \%, 67 \%$ or 150%			
If no correct values seen,			
B1 for any correct proportion			
eg Potatoes $=3 \times$ Stock			
Potatoes $=12 \times$ Carrots			
Stock $=4 \times$ Carrots			

3	Any two numbers approximated	M1	ie 400, 402, 403, 2, 39 or 40
	All three numbers approximated or a calculation using two approximated values	M1	eg $\frac{402.5}{78}$
	5	A1	must come from $\frac{400}{2 \times 40}$

4 a	$w^{2}+6 w$	B2	B1 for w^{2} or $(+) 6 w$ Award B1 if further working seen after correct answer

4 b	$4(2 y+5)$	B2	B1 for 2(4y + 10) or 8 $(y+2.5)$ Award B1 if further working seen after correct answer

5	$\frac{40}{100} \times 8(.00)(=3.2(0))$	M1	oe 1.4 seen oe eg $\frac{140}{100}$
	$8+$ their 3.2(0)	M1 dep	$\frac{140}{100} \times 8(.00)$
11.20	Q1	Strand (i) Do not accept 11.2 11.2 or 1120 implies M2	

6

Any pair of numbers that give a product of -10 eg any column pair from this table
 x -6 -1 2 3 5 6 9 14 y -2 -1 2 7 -13 -8 -5 -4
x and y values such that $y=\frac{2-3 x}{x-4}$


	```B1 for a pair giving a product of +10```								
	$x$	-	-1	2	3	5	6		14
B2	y	-4	-5	-8	-13	7	2		-2
	B1 for $y=\frac{2-3 x}{x-4}$ or $x=\frac{2+4 y}{y+3}$								


73	Identifies at least one pair of   factors 2 $(x) 63,3(x) 42$,   $6(x) 21,7(x) 18,9(x) 14$	M1	Do not accept 1 $(x) 126$   Accept eg 3, 6,7
	$2 \times 3 \times 3 \times 7$	A1	Oe must see multiplication signs   SC1 for 2 $(x) 3(x) 7$


$7 b$	Identifies at least one pair of   factors 2(x) 36, 3(x) 24,   $4(x) 18,6(x) 12,8(x) 9$	M1	Accept $2(x) 2(x) 2(x) 3(x) 3$   Do not accept $1(x) 72$
18	A1	SC1 for 6 or 9 or $2 \times 3 \times 3$	



9	$-4,-3,-2,-1,0,1$	B2	One error or omission B1   also $-4 \leq n<2$ B1


10	(Billie $=£) 8$   $\left(\frac{2}{3}=\right) 8$	B1	
	their $8 \div 2 \times 3(=12)$	M1	oe
	their $12 \div 4 \times 5$	M1	oe
	15	A1	


11 a	$(0) .00246$	B1	


11 b	$0.2 \times 10^{3}$	M1	$180000(\div) 900$   or 200 or $18 \times 10^{4} \div 9 \times 10^{2}$   or $\frac{1.8 \times 10^{3}}{9}$   or other correct equivalent   expression
	$2(.0) \times 10^{2}$	A1	


$2.2+1.6 x$ or $4(.0)+1.4 x$   or $220+160 x$ or $400+140 x$	M1	oe(an extra) (£)1.80 or 180p   or 20p (per kilometre) seen
$2.2+1.6 x=4(.0)+1.4 x$   or $220+160 x=400+140 x$   or	M1 dep	oeallow one error   or 180 p is equivalent   to 20p per kilometre oe   or $160 x-1.4 x=4(.0)-2.2$
$(x=) 9$	A1	Journey is 9 kilometres
$2.20+1.60 \times$ their 9   or $4.00+1.40 \times$ their 9   or $1.70 \times$ their 9	M1dep	dep on second M1
$(£) 16.6(0)$ and $(£) 15.3(0)$	A1 ft	ft their 9
Correct conclusion from their   working with all steps shown	Q1	Strand (iii)   eg yes, it is cheaper


13	$\begin{gathered} (5 x-4 y=24) \\ 2 x+4 y=18 \\ \hline \end{gathered}$	$\begin{aligned} (5 x-4 y & =24) \\ 5 x+10 y & =45 \end{aligned}$	M1	oe for equating coefficients   Allow error in one term
	$7 x=42$	$14 y=21$	M1	Correct elimination from their equations
	$x=6$	nd $y=1.5$	A1	SC1 correct answers with no working or using trial and improvement
	Alternative method			
	$\begin{aligned} & x=9-2 y \text { and } \\ & 5(9-2 y)-4 y=24 \\ & \quad \text { or } \\ & y=\frac{9-x}{2} \quad \text { and } \\ & 5 x-4 \frac{(9-x)}{2}=24 \\ & \end{aligned}$		M1	Allow one error ... it can be a substitution error (eg $x=9+2 y$ ) or a sign error in the equation
	Simplifying and solving as far as $14 y=21$ or $7 x=42$		M1	Correct simplification from their substitution
	$x=6 \quad$ and $\quad y=1.5$		A1	SC1 correct answers with no working or using trial and improvement


14	Recognises the repeating pattern   of 5	M1	This might be indicated in the table		
Uses 5					
eg $2012 \div 5$ gives remainder 2					
or $2012 \div 5=402$ rem 2					
or the answer for $3^{2012}$ is the					
same as for $3^{2}, 3^{7}, 3^{12}$ etc					
or states the formula $5 n+2$					
or $2000 \div 5=400$ (so the pattern					
starts again at 1 for $3^{2000}$ )				$\quad$ M1	oe
:---					
9					


| 15 | M1 |  |
| :---: | :--- | :---: | :--- |
| $x(y-5)=2+3 y$ | M1dep | oe |
| $x y-5 x=2+3 y$ <br> $x y-3 y=2+5 x \quad$ or <br> $y(x-3)=2+5 x$ | M1dep | or $-5 x-2=3 y-x y$ <br> or $-5 x-2=y(3-x)$ |
| $y=\frac{2+5 x}{x-3}$ | A1 | or $y=\frac{-5 x-2}{3-x}$ <br> SC3 for $y=\frac{7}{x-3}$ or $y=\frac{-7}{3-x}$ <br> only from an incorrect expansion <br> of $x y-5=2+3 y$ at 2nd stage |


16a	$(\sqrt{ } 175=) \sqrt{ }(25 \times 7)$ or $\sqrt{ } 25 \times \sqrt{ } 7$   $\sqrt{ }(5 \times 5 \times 7)$ or $\sqrt{ } 5 \times \sqrt{ } 5 \times \sqrt{ } 7$	M1	
$5 \sqrt{ } 7$	A1	Accept $a=5$ and $b=7$   or $5 \times \sqrt{ } 7$	


16 b	$\frac{24 \sqrt{3}}{\sqrt{3} \sqrt{3}}\left(=\frac{24 \sqrt{3}}{3}\right)$	M1	
	$8 \sqrt{ } 3$	A1	Accept $8 \times \sqrt{ } 3$


17	$A=(3,0)$	B 1	
	$B=(0,6)$	B 1	
Gradient of $D C=\frac{12-0}{-3-(-7)}(=3)$	B 1 ft	ft from their $A$ and $B$   $C=(-3,12)$ seen scores B3	
Uses $y=m x+c$ and substitutes   the coordinates of $D$ and their $C$	M 1	$0=7 m+c$ and $12=-3 m+c$	
	$y=3 x+21$	A 1	oe


18	$c^{2}=16$ or $c=4$ or $c=-4$	M 1	
	$3 x^{2}+3 c x+c x+c^{2}$   $\left(=3 x^{2}-d x+16\right)$	M 1	$3 x^{2}+12 x+4 x+16$   or $3 x^{2}-12 x-4 x+16$
$c=4$ and $c=-4$ or $4 c=-d$   or $16=-d$ or $-16=-d$	M 1	oe	
$c=4$ and $d=-16$   or   $c=-4$ and $d=16$	A 1	One pair of answers   or   all four answers seen but not paired	
$c=4$ and $d=-16$   and   $c=-4$ and $d=16$	Both pairs of answers must be   correctly paired   SC3 for one correct pair or both   correct pairs or all four answers   seen but not paired from no working		

