Centre Number			Candidate Number		
Surname					
Other Names					
Candidate Signature					

General Certificate of Education Advanced Level Examination June 2011

Use of Mathematics (Pilot)

USE3

Mathematical Comprehension

Thursday 26 May 2011 9.00 am to 10.30 am

For this paper you must have:

- a clean copy of the Data Sheet (enclosed)
- a graphics calculator
- a ruler.

Time allowed

• 1 hour 30 minutes

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- Write the question part reference (eg (a), (b)(i) etc) in the left-hand margin.
- You must answer the questions in the spaces provided. Do not write outside the box around each page.
- Show all necessary working; otherwise marks for method may be lost.
- Do all rough work in this book. Cross through any work that you do not want to be marked.
- The **final** answer to questions requiring the use of tables or calculators should normally be given to three significant figures.
- You may not refer to the copy of the Data Sheet that was available prior to this examination. A clean copy is enclosed for your use.

Information

- The marks for guestions are shown in brackets.
- The maximum mark for this paper is 45.

Advice

 You are advised to spend 1 hour on Section A and 30 minutes on Section B

For Examiner's Use							
Examiner's Initials							
Question	Mark						
1							
2							
3							
4							
5							
6							
7							
8							
9							
10							
11							
12							
TOTAL							

Section A

Answer all questions in the spaces provided.

Use Skydiving - no time for differential equations! on the Data Sheet.

1 (a) The article considers the case of a skydiver with zero initial velocity and with $\frac{dv}{dt} = g$.

Show clearly that v = gt in this case.

(2 marks)

(b) For this skydiver, find how long it would take to reach a downward vertical speed of $40 \,\mathrm{m\,s^{-1}}$.

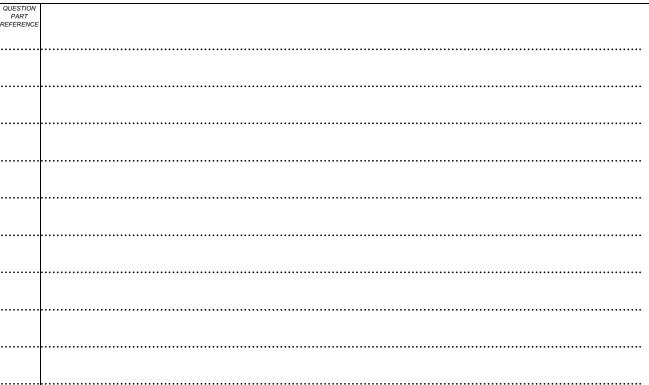
QUESTION PART REFERENCE	

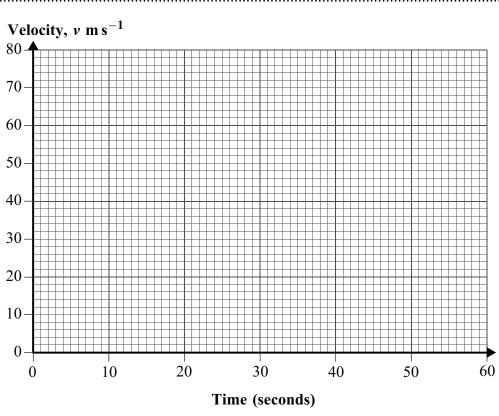
2		Use the	e data	given	in Fig	ure 3,	on the	data	sheet, t	o confi	irm tha	t the fur	ncti	on
		v = gt	does 1	not pro	ovide a	a suital	ole mo	del to	describ	e how	v varie	es with t	t.	(2 marks)
QUESTION PART														
REFERENCE														
•••••		•••••	•••••	•••••	•••••	•••••	••••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••••	•••••	•••••	• • • • •	•••••
••••••	•••••	•••••	••••••	•••••	•••••	••••••	••••••	• • • • • • • • • • • • • • • • • • • •	••••••	••••••	•••••	••••••	•••••	•••••••
•••••		•••••	•••••	•••••	•••••	•••••	••••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••••	•••••	•••••		•••••
		•••••								•••••		•••••		
•••••												•••••		
•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	•••••	•••••	••••••		••••••	••••••	•••••	••••••	• • • • • •	•••••
•••••		•••••	•••••	•••••	•••••	•••••			•••••	•••••	•••••		• • • • •	
••••••	• • • • • • • • • •	•••••	••••••	•••••	•••••	••••••	••••••	• • • • • • • • • • • • • • • • • • • •	••••••	••••••	•••••	•••••	• • • • • •	•••••
•••••		•••••	•••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	•••••	•••••	•••••
•••••		•••••	••••••	••••••	•••••	••••••	••••••	• • • • • • • • • • • • • • • • • • • •	••••••	••••••	•••••	•••••	•••••	•••••
•••••					•••••							•••••		
•••••	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	• • • • • • • • • • • • • • • • • • • •	••••••	••••••	•••••	•••••	•••••	•••••
	• • • • • • • • • • • • • • • • • • • •													
	I													

3		Show,	for the ca	se of a sky	diver with	initial vel	ocity	v_0 , how	
		t =	$-\frac{1}{k}\ln(g-$	-kv)+c	leads to	$v = \frac{g}{k}$	$-\left(\frac{g}{k}\right)$	$-v_0$) e^{-kt}	(5 marks)
QUESTION PART REFERENCE									
	••••••	•••••	••••••				• • • • • • • •		
							•••••		
	•••••	•••••					•••••		
	•••••	•••••		•••••			•••••		
		•••••					•••••		
				•••••					
							•••••		
•••••	•••••						•••••		
			••••••	•••••			• • • • • • • • •		
	•••••						•••••		
•••••	•••••	•••••		•••••			•••••		
							•••••		
	••••••								

4	Explain how the expression	$v = \frac{g}{k}$	$\left(\frac{g}{k} - v_0\right) e^{-kt}$	suggests that the terminal	
	velocity of a skydiver is v_{∞}	$=\frac{g}{k}$.		(2	? marks)

QUESTION PART REFERENCE	
PART	
REFERENCE	
• • • • • • • • • • • • • • • • • • • •	
• • • • • • • • • • • • • • • • • • • •	
• • • • • • • • • • • • • • • • • • • •	


5	The velocity of the skydiver in the article is given by $v = 53.6(1 - e^{-0.183t})$. Find how long it takes this skydiver to reach a speed of $40 \mathrm{ms^{-1}}$, giving your answer to three significant figures. (3 marks)
QUESTION PART REFERENCE	



A skydiver has velocity given by $v = 70(1 - e^{-kt})$.

(a) Find the value of k. (2 marks)

(b) On the grid at the bottom of this page, sketch a graph of the function you have found in part (a), indicating all significant features clearly. (2 marks)

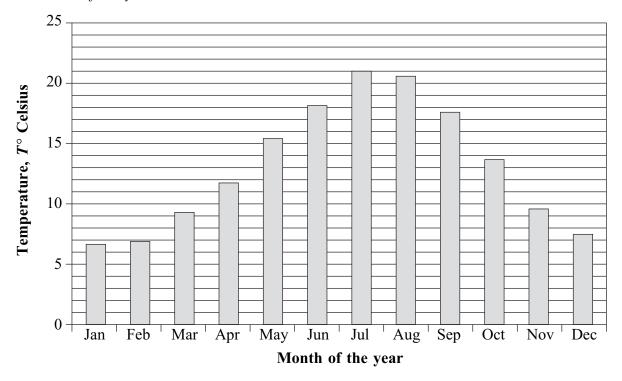
Turn over ▶

7	For the case of the skydiver in the article, $v = 53.6 - 53.6 e^{-0.183t}$.									
(a)	Show clearly how this leads to the expression $x = 53.6[t + 5.46(e^{-0.183t} - 1)]$, for the vertical distance, x metres, fallen by the skydiver after time t seconds. (5 marks)									
(b	For large values of t , the expression for x in terms of t approximates to $x = 53.6(t - 5.46)$.									
	Give a brief explanation of why you know that this expression is not suitable for small values of t . (2 marks)									
QUESTION PART REFERENCE										
•••••										

ð	graphs of v against t (Figure 4 on the Data She Data Sheet), for:	
(a	$0\leqslant t\leqslant 20;$	(2 marks)
(b	$30 \leqslant t \leqslant 60.$	(2 marks)
QUESTION PART REFERENCE		
••••••		
•••••		
•••••		
•••••		

Section B

Read carefully the article below and answer all questions in the spaces provided.

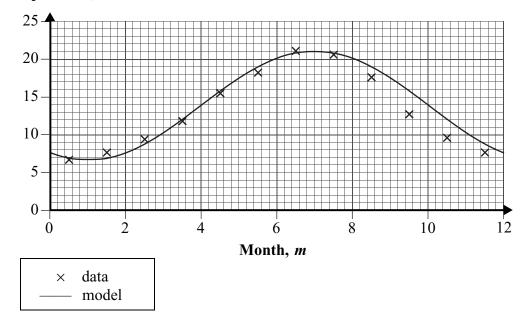

Annual temperature cycle

For London, the mean daily maximum temperature, T° Celsius, for each month of the year is given in **Figure 6**. These data are plotted as a bar chart in **Figure 7**.

Figure 6 Table giving the mean daily maximum temperature, T° Celsius, in London for each month of the year

Month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Temperature	6.6	6.9	9.3	11.7	15.4	18.1	21.0	20.5	17.5	13.6	9.5	7.4

Figure 7 Bar chart giving the mean daily maximum temperature, T° Celsius, in London for each month of the year



Like many annual cycles of this type, it appears that a trigonometric function might be suitable to model these data. **Figure 8** shows the data values plotted against the number of months, m, into the year. The temperature is plotted at the mid-point of each month, so the value for January is plotted at $\frac{1}{2}$, the value for February at $1\frac{1}{2}$ and so on. This wave is modelled by the function $T = 13.8 + 7.2 \sin\left(\frac{\pi}{6}m - \frac{2\pi}{3}\right)$, the graph of which is also shown in **Figure 8**, for $0 \le m \le 12$. As you can see, this proves to be a relatively good model for the data.

Figure 8 Data for mean daily maximum temperature, T° Celsius, in London plotted for each month of the year together with the function $T = 13.8 + 7.2 \sin\left(\frac{\pi}{6}m - \frac{2\pi}{3}\right)$ used to model this

Temperature, T° Celsius

Although it is not necessary, the function used to model the data allows you to use calculus to determine some key features of how the mean daily maximum temperature, T° Celsius, varies over the year. For example:

- (i) finding $\frac{dT}{dm}$ allows you to determine that the rate of increase of T is a maximum when m = 4;
- (ii) the average, \overline{m} , of the mean daily maximum temperature over the summer months can be found using integration:

$$\overline{m} = \frac{1}{6} \int_{3}^{9} \left[13.8 + 7.2 \sin\left(\frac{\pi}{6}m - \frac{2\pi}{3}\right) \right] dm = 17.8$$

9 Use the model

$$T = 13.8 + 7.2\sin\left(\frac{\pi}{6}m - \frac{2\pi}{3}\right)$$

to confirm that T has a maximum of 21 when m = 7, that is, during the month of July. (2 marks

QUESTION PART REFERENCE	
PART	
REFERENCE	
• • • • • • • • •	
• • • • • • • • • • • •	

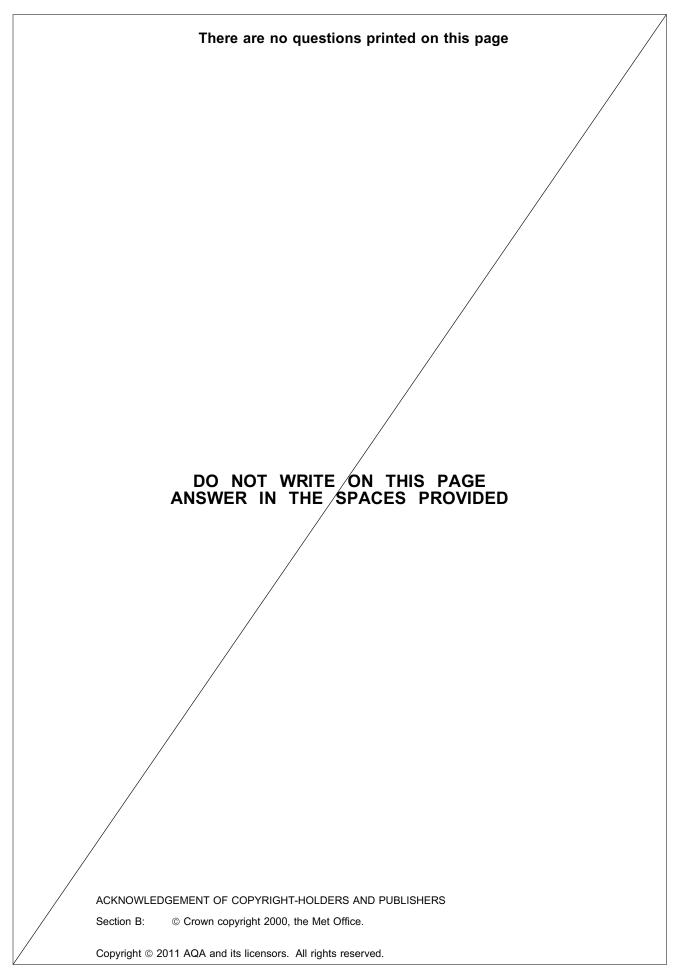
- Find the rate of change of the function $T = 13.8 + 7.2 \sin\left(\frac{\pi}{6}m \frac{2\pi}{3}\right)$ with respect to m and use this to show that the rate of change of daily maximum temperature is greatest for the first time when m = 4.
 - **(b) (i)** Use the expression that you have for $\frac{dT}{dm}$ to find the value of m for $0 \le m \le 12$ for which $\frac{dT}{dm}$ is a minimum.
 - (ii) Interpret this in terms of the situation. (1 mark)

QUESTION	
QUESTION PART REFERENCE	
•••••	
• • • • • • • • • • • • • • • • • • • •	
• • • • • • • • • • • • • • • • • • • •	

11	Show clearly, using calculus and setting out all steps of your calculations, that the
	average, \overline{m} , of the mean daily maximum temperature over the summer months is

$$\overline{m} = \frac{1}{6} \int_{3}^{9} \left[13.8 + 7.2 \sin\left(\frac{\pi}{6}m - \frac{2\pi}{3}\right) \right] dm = 17.8$$
 (3 marks)

QUESTION	
QUESTION PART REFERENCE	
• • • • • • • • • • • • • • • • • • • •	
• • • • • • • • • • • • • • • • • • • •	
• • • • • • • • • • • • • • • • • • • •	
• • • • • • • • • • • • • • • • • • • •	
• • • • • • • • • • • • • • • • • • • •	
• • • • • • • • • • • • • • • • • • • •	
• • • • • • • • • • • • • • • • • • • •	
• • • • • • • • • • • • • • • • • • • •	
• • • • • • • • • • • • • • • • • • • •	


The table below shows the mean daily minimum temperature, T° Celsius, for each month of the year.

Month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Temperature	1.0	1.1	2.4	3.6	6.3	9.1	11.4	11.2	9.3	6.6	3.5	2.0

Find a trigonometric function of the form $T = A + B \sin\left(\frac{\pi}{6}m - \frac{2\pi}{3}\right)$, where *m* is the number of months into the year, to model these data. (2 marks)

OUEOTION	
QUESTION PART REFERENCE	
REFERENCE	
• • • • • • • • • • • • • • • • • • • •	
• • • • • • • • • • • • • • • • • • • •	
• • • • • • • • • • • • • • • • • • • •	
	L
	END OF QUESTIONS
	2.12 3. 4323110110

