

General Certificate of Education June 2010

Mathematics
Statistics

MS1B
SS1B

Statistics 1B

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2010 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme and abbreviations used in marking

$\left.\begin{array}{lll}\text { M } & \text { mark is for method } & \\ \hline \mathrm{m} \text { or } \mathrm{dM} & \text { mark is dependent on one or more } \mathrm{M} \mathrm{marks} \text { and is for method } \\ \text { A } & \text { mark is dependent on } \mathrm{M} \text { or } \mathrm{m} \text { marks and is for accuracy }\end{array}\right]$

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.
Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

MS/SS1B

MS/SS1B (cont)

Q	Solution	Marks	Total	Comments
2				
(a)(i)	Mean, $\bar{d}=1.5$	B1		CAO $\quad \sum d=18$ Ignore notation and units
	Standard deviation, σ_{d} or s_{d}			(11.737 or 12.259)
	$=11.7$ to 12.3	B1	2	AWFW $\quad \sum d^{2}=1680$
(ii)	Mean, $\quad \bar{x}=50+\bar{d}=\mathbf{5 1 . 5}$	B1F		F on (a)(i) or correct
	x: 32395165574967468475059			$\sum x=618 \quad \sum x^{2}=33480$ Ignore notation and units
	$\begin{aligned} & \text { Standard deviation, } \sigma_{x} \text { or } s_{x} \\ &=\mathbf{1 1 . 7} \text { to } \mathbf{1 2 . 3} \end{aligned}$	B1F	2	F on (a)(i) providing >0 or correct
(b)	$\begin{aligned} & {[\text { Values, mean or sd in (a)(i) or (a)(ii)] }} \\ & \quad \times \frac{1.22}{100} \text { or } 1.22 \end{aligned}$	M1		Award if use seen or implied by ≥ 1 Subsequent correct or (correct $\times 100$) answer
	Mean $=0.628$ to 0.63	A1		AWFW (0.6283)
	Standard deviation $=\mathbf{0 . 1 4}$ to 0.151	A1	3	AWFW (0.1432 or 0.1496)
	Special Cases: At least one answer correct with no stated units or incorrect stated units \Rightarrow M1 A1 A1 max			
	At least one answer $\times 100$ with its units stated as 'cents' \Rightarrow M1 A1 A1 max At least one answer $\times 100$ with no units stated or units stated as euros / pence / $£$ $\Rightarrow \mathrm{M} 1$ only			'cents' attached to $\geq \mathbf{1}$ answer $\times 100$
	Total		7	

MS/SS1B (cont)

MS/SS1B (cont)

MS/SS1B (cont)

Q 5	Solution				Marks	Total	Comments
							Ratios (eg 63:100) are only penalised byl mark at first correct answer F marks can only be awarded if $0<p<1$
(a)	$\mathrm{P}(J)=0$	$\mathrm{P}(R \mid J)=0.7 \mathrm{P}\left(R \mid J^{\prime}\right)=0.2$					
(i)	$\begin{aligned} \mathrm{P}(\text { both at trough })=0.9 & \times 0.7 \\ & =\mathbf{0 . 6 3}=\mathbf{6 3} / \mathbf{1 0 0} \end{aligned}$				$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	2	Can be implied by correct answer CAO
(ii)	$\begin{aligned} \mathrm{P}(\text { neither at trough }) & =(1-0.9) \times(1-0.2) \\ & =0.1 \times 0.8 \end{aligned}$				M1		Can be implied by correct answer
	$=0.08=8 / 100=4 / 50=2 / 25$				A1	2	CAO
(iii)	$\begin{aligned} & \mathrm{P}(\text { at least one at trough })=(1-\text { (ii) }) \\ & \quad=\mathbf{0 . 9 2}=\mathbf{9 2} / \mathbf{1 0 0}=\mathbf{4 6} / \mathbf{5 0}=\mathbf{2 3} / \mathbf{2 5} \end{aligned}$						
					B1F	1	F on (ii) or correct answer
(b)(i)		M	M^{\prime}	Total	B1		Both row and column totals ie 0.25 and 0.40 ; CAO
	D	0.40	0.35	0.75			
	D^{\prime}	0.20	0.05	0.25			
	Total	0.60	0.40	1.00	B1	2	Three table values ie 0.35 and 0.20 and 0.05 ; CAO
	Notes: Use of Venn or tree diagrams without table completion \Rightarrow B0 B0 Table not completed on page 13 but completed on page $10 \Rightarrow \max$ of B1 B1						
(A)	$\mathrm{P}($ neither at gate $)=0.05$				B1F	1	F on table or correct answer by 'otherwise'
(B)	$\mathrm{P}($ only Daisy at gate $)=\mathbf{0 . 3 5}$				B1F	1	F on table or correct answer by 'otherwise'
(C)	$\begin{aligned} & \mathrm{P}(\text { exactly one at gate })= \\ & \mathrm{P}\left(D \cap M^{\prime}\right)+\mathrm{P}\left(D^{\prime} \cap M\right) \end{aligned}$				M1		Only correct two values from c's table shown and added Can be implied by correct answer
			0.20	0.55	A1F	2	F on table or correct answer by 'otherwise'
				Total		11	

MS/SS1B (cont)

MS/SS1B (cont)

Q	Solution	Marks	Total	Comments
7(a)(i)	$\bar{t}-2 s=6.31-2 \sqrt{19.3}=\mathbf{- 2 . 4 8}$ to -2.47	B1		AWRT (-2.4764)
	Negative value is impossible for a measurement of time	B1	2	Or equivalent; allow if negative value incorrect or not stated
(ii)	Sample size, $n=80$ is large $/>25$	B1		Indication that given sample is 'large'
	Thus sample mean $(\bar{T}) \sim$ approximately normal due to CLT	B1dep	2	Dependent on previous B1 Requires 'mean' and 'normal' and 'CLT'
(b)	$98 \%(0.98) \Rightarrow z=\mathbf{2 . 3 2}$ to 2.33	B1 (B1)		$\begin{array}{lr} \text { AWFW } & \text { (2.3263) } \\ t_{79}(0.99)=2.37 & \text { AWRT } \end{array}$
	CI for μ is $\quad \bar{t} \pm z / t \times \frac{s}{\sqrt{n}}$	M1		Used Must have \sqrt{n} with $n>1$
	Thus $\quad 6.31 \pm 2.3263 \times \frac{\sqrt{19.3}}{\sqrt{80}}$	A1F		F on z / t only
	Hence or $\mathbf{6 . 3 1} \pm(\mathbf{1 . 1 3}$ to 1.15$)$ $\left(\begin{array}{l}\text { 5.16 to } \\ \end{array}\right.$	A1		CAO and AWFW AWFW (5.17, 7.45)
	Note: Use of t gives $6.31 \pm$ (1.17) or (5.14, 7.48)	(A1)	4	AWRT
(c)	$\mu_{T}<8$			
	Since CI/ UCL $<8 \quad \Rightarrow$ Yes	B1F		$\mathrm{CI} / \mathrm{UCL}$ and state a correct followthrough conclusion
	$\mathrm{P}(T \leq 20)>95 \%$			
	$\begin{aligned} & \mathrm{P}(T>20)=\mathbf{1 / 8 0}=\mathbf{0 . 0 1} \text { to } \mathbf{0 . 0 1 3} \\ & \text { or } \\ & \mathrm{P}(T \leq 20)=\mathbf{7 9 / 8 0}=\mathbf{0 . 9 8 7} \text { to } \mathbf{0 . 9 9} \end{aligned}$	B1		CAO/AWFW; accept eg ' 1 in 80 ' B0 for use of normal distribution CAO/AWFW; accept eg '79 in 80 '
	$\begin{aligned} & \mathrm{P}(T>20)<\mathbf{0 . 0 5} \text { or } \mathbf{5 \%} \\ & \text { or } \\ & \mathrm{P}(T \leq 20)>\mathbf{0 . 9 5} \text { or } \mathbf{9 5 \%} \end{aligned} \quad \Rightarrow \text { Yes }$	B1dep	3	Dependent on previous B1 A correct comparison must be clearly stated together with clear conclusion Do not accept use of 2% or 98% OE
	Total		11	
	TOTAL		75	

