

General Certificate of Education (A-level) January 2012

Mathematics
MS/SS1B

(Specification 6360)

Statistics 1B

Final

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk
Copyright © 2012 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme abbreviations

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
B	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
Jor ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
$-x$ EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied SCA
substantially correct approach	
cf	candidate
dp	significant figure(s)
decimal place(s)	

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.
Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

MS/SS1B

Q	Solution	Marks	Total	Comments
$\begin{gathered} 1 \\ \text { (a) } \end{gathered}$	Median $=10$ Upper quartile $=11$ Lower quartile $=9$ Interquartile range $=2$	B1 B1 B1	3	CAO CAO; either May be implied by $\mathrm{IQR}=2$ CAO; do not award if seen to be not based on 11 and 9
(b)	Do not group results Illustrations for B1: Use all values Replace ≤ 6 by or use (0), $1, \ldots, 6$ Replace ≥ 12 by or use $12,13, \ldots$ Record exact values/frequencies	B1	1	OE statement that implies non grouping or recording of all separate observed values Illustrations for B0: Record max and/or min values Construct frequency table Use 1,2 or 12,13
		Total	4	

Q	Solution	Marks	Total	Comments
$\mathbf{2}$	B1		CAO; accept minimum of PC or Pc or pC or pc	
(a)	Probably correct	B1		CAO; accept minimum of DI or Di or dI or di (c)
Probably incorrect Notes: Ignore reasoning in all parts, unless it includes 2 of the 4 statements in which case \Rightarrow B0 If answers not labelled, then assume above order	B1	CAO; accept minimum of PI or Pi or pI or pi		
		Total	$\mathbf{3}$	Definitely wrong, etc \Rightarrow B0 Likely correct, etc $\Rightarrow \mathrm{B} 0$

Q	Solution	Marks	Total	Comments
3(a) (i)	Volume, $X \sim \mathrm{~N}\left(32,10^{2}\right)$ $\begin{gathered} \mathrm{P}(X<40)=\mathrm{P}\left(Z<\frac{40-32}{10}\right) \\ =\mathrm{P}(Z<0.8) \\ \quad=0.788 \end{gathered}$	M1 A1 A1	3	Standardising 40 with 32 and 10 ; allow (32-40) CAO; ignore inequality and sign May be implied by a correct answer AWRT (0.78814)
(ii)	$\begin{aligned} & \mathrm{P}(X>25)=\mathrm{P}(Z>-0.7) \\ & =\mathrm{P}(Z<+0.7) \\ & =0.758 \end{aligned}$	M1 A1	2	Area change May be implied by a correct answer or an answer > 0.5 AWRT (0.75804)
(iii)	$\begin{align*} & \mathrm{P}(25<X<40)= \tag{i}\\ & =0.78814-(1-0.75804)=0.546 \end{align*}$ Note: If (ii) is 0.242 , then $(0.788-0242)=0.546 \Rightarrow \mathrm{M} 0 \mathrm{~A} 0$	M1 A1	2	OE; allow new start ignoring (i) \& (ii) Allow even if incorrect standardising providing $0<$ answer < 1 May be implied by a correct answer AWRT (0.54618)
(b)	$\mathrm{P}(B>£ 65)=\mathrm{P}\left(Z>\frac{48.5-32}{10}\right)$ or $\mathrm{P}\left(Z>\frac{65-42.88}{13.4}\right)$ $=\mathrm{P}(Z>1.65)=1-\mathrm{P}(Z<1.65)$ $=1-0.95053=0.049 \text { to } 0.05(0)$	M1 m1 A1	3	Attempt to change from B to X using (48 to 49), 32 and 10 or Attempt to work with distribution of B using 65 , (42.8 to 42.9) and 13.4 Area change May be implied by a correct answer or an answer < 0.5 AWFW (0.04947)
(c)	Other fuels Other vehicles with an example (not other cars) Other types of customer Minimum purchase (policy) Purchases in integer/fixed $£$ s Customers filling fuel cans	B2,1	2	Size of car/engine/fuel tank \Rightarrow B0 Price of fuel \Rightarrow B0 Customer paying capacity $\Rightarrow \mathrm{B} 0$ Must be two clearly different valid reasons for award of B2 Drivers and vehicles related \Rightarrow B1 eg lorry drivers \& lorries
		Total	12	

Q	Solution	Marks	Total	Comments
4(a) (i)	$\begin{array}{r} \underline{U \sim \mathrm{~B}(40,0.15)} \\ \mathrm{P}(U=6)=0.6067-0.4325 \end{array}$ or $\begin{aligned} & =\binom{40}{6}(0.15)^{6}(0.85)^{34} \\ & =0.174 \end{aligned}$	M1 M1 A1	3	Used somewhere in (a) Accept 3 dp rounding or truncation Can be implied by a correct answer AWRT (0.1742)
(ii)	$\mathrm{P}(U \leq 5) \quad=0.432$ to 0.433	B1	1	AWFW (0.4325)
(iii)	See supplementary sheet for individual probabilities $\mathrm{P}(5<U<10)=0.9328 \text { or } 0.9701$ MINUS 0.4325 or $0.2633\left(p_{2}\right)$ $=0.5(00) \text { to } 0.501$	M1 M1 A1	3	Accept 3 dp rounding or truncation but allow 0.97 $\begin{aligned} p_{2}-p_{1} & \Rightarrow \text { M0 M0 A0 } \\ \left(1-p_{2}\right)-p_{1} & \Rightarrow \text { M0 M0 A0 } \\ p_{1}-\left(1-p_{2}\right) & \Rightarrow \text { M1 M0 A0 } \\ \left(1-p_{2}\right)-\left(1-p_{1}\right) & \Rightarrow \text { M1 M1 (A1) } \end{aligned}$ only providing result >0 Accept 3 dp rounding or truncation AWFW (0.5003)
(b)	Mean or $\mu=32 \times 0.15=4.8$ $\left(\mathrm{V} \text { or } \sigma^{2}=\right) 32 \times 0.15 \times 0.85$ or $(\mathrm{SD}$ or $\sigma=) \sqrt{32 \times 0.15 \times 0.85}$ $(\mathrm{SD} \text { or } \sigma)=2.02$	B1 M1 A1	3	CAO Either numerical expression; ignore terminology May be implied by 4.08 CAO seen or 2.02 AWRT seen AWRT (2.0199) Do not award if labelled V or σ^{2}
(c)	$\text { Mean }=7.7$ $\mathrm{SD}=1.26 \text { to } 1.34$ (Sample) mean is bigger / greater / different or $7.7 / 32=0.24>0.15$ and (Sample) SD is smaller / less / different So model appears unsuitable	B1 B1 Bdep1 Bdep1	4	CAO $\left(\sum x=77\right)$ AWFW $\left(\sum x^{2}=609\right)$ Both; dependent on all previous 5 marks of B1 M1 A1 B1 B1 Can be scored for incorrect (b) re-done correctly in (c) Means \& SDs different \Rightarrow Bdep0 OE; dependent on Bdep1
		Total	14	

Q	Solution	Marks	Total	Comments
5	See supplementary sheet for alternative solutions and additional guidelines to parts (b), (d) and (e)			
(a)	Calorific value depends upon moisture content Moisture (content) is set/are fixed values	B1	1	Must be in context; not "it", etc Use of x and $y \Rightarrow B 0$
(b)	$\begin{aligned} & b \text { (gradient })=-0.076 \\ & b \text { (gradient) }=-0.07 \text { to }-0.08 \\ & a \text { (intercept) }=5.35 \text { to } 5.36 \\ & a \text { (intercept) }=5.1 \text { to } 5.6 \\ & \text { Thus } y=(5.35 \text { to } 5.36)-0.076 x \end{aligned}$	B2 (B1) B2 (B1) BF1	5	AWRT; including -ve sign (-0.07582) AWFW; including -ve sign Treat rounding of correct answers as ISW AWFW (5.35385) AWFW F on a and b even if rounded
(c)	a : calorific value of wood with zero/no moisture or dry maximum calorific value b : each $1(\%)$ rise in moisture content reduces calorific value by $0.076 \mathrm{MWh} /$ tonne As x increases y decreases	B1 B2 (B1)	3	OE; $a \leq 0 \Rightarrow \mathrm{~B} 0$ In context and with values; F on b $b \geq 0 \Rightarrow \mathrm{~B} 0$ Negative relationship/correlation
(d)	$\begin{aligned} & y_{27}=3.28 \text { to } 3.32 \\ & =2.5 \text { to } 3.5 \end{aligned}$	$\begin{gathered} \text { B2 } \\ \text { (B1) } \end{gathered}$	2	AWFW (3.30659) AWFW; even if by interpolation from original data giving likely values of 3 or 3.04
(e)	$\begin{aligned} & r(35,2.5)=-0.21 \text { to }-0.19 \\ & =0.1 \text { to } 0.3 \end{aligned}$	$\begin{gathered} \mathrm{B} 2 \\ \text { (B1) } \end{gathered}$	2	AWFW; including -ve sign (-0.20000) AWFW; ignore sign
(f)	Good/reasonable/accurate/correct/etc Accept more positive qualifying adjectives	B1	1	OE; ignore reasoning Very good (B1) Not good (B0)
(g)(i)	Extrapolation/outside (observed) range (of x)	B1	1	OE
(ii)	$y_{80}=-0.5 \text { to }-1$ Negative value for calorific value is impossible or More energy needed than is generated	B1 Bdep1	2	AWFW (-0.71209) OE; dependent on B1 Must be in context; negative value impossible \Rightarrow Bdep0
		Total	17	

MS/SS1B (cont)

Q	Solution				Marks	Total	Comments
(a)(i)	See supplementary sheet for alternative solutions to parts (a)(i) and (b)(ii)				B1 B1 Bdep1		0.15 or 0.4 ; CAO; allow fractions 0.05 and 0.3 ; CAO; allow fractions 0.1; AG so dependent on B1 B1
	Table Method (2- way with either R or C totals)						
		A	A^{\prime}	Total			
	E	0.55	0.05	0.60			
	E^{\prime}	0.30	0.10	0.40			
	Total	0.85	0.15	1.00			
(ii)	$\mathrm{P}(\geq 1)=0.9$ or $9 / 10$				B1	1	CAO
(iii)	$\begin{aligned} & \mathrm{P}(1)=0.3+0.05=1-(0.55+0.10) \\ & =0.35 \text { or } 35 / 100 \text { or } 7 / 20 \end{aligned}$				B1	1	CAO
(b)(i)	$\begin{aligned} & \mathrm{P}(3)=0.55 \times 0.30 \\ & =0.165 \text { or } 165 / 1000 \text { or } 33 / 200 \end{aligned}$				$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	2	OE; implied by correct answer CAO
(ii)	$\begin{aligned} & 0.55 \times(1-0.3) \text { or } 0.385 \\ & \text { or } \quad(0.3 \times 0.75) \text { or } 0.225 \\ & \text { or } \quad(0.05 \times 0.75) \text { or } 0.0375 \\ & \quad(0.38 \times 0.75) \text { or } 0.2625 \\ & =0.812 \text { to } 0.813 \\ & \text { or } \frac{8125}{10000} \text { or } \frac{1625}{2000} \text { or } \frac{325}{400} \text { or } \frac{65}{80} \text { or } \frac{13}{16} \end{aligned}$				M1 M1 B1 A1	4	At least one of these expressions or values OE; implied by correct answer AWFW (0.8125) CAO
					Total	11	

MS/SS1B (cont)

Q (a)(iii)	Solution			Marks	Total	Comments		
	Alternative solution			$\begin{aligned} & \text { M2 } \\ & \text { A1 } \end{aligned}$	Can be implied by a correct answer AWFW (0.5003)	n be implied by a correct answer WFW(0.5003)		
	$B(40,0.15)$ expressions stated for at least 3 terms within $5 \leq U \leq 10$ gives probability $=0.5(00)$ to 0.501							
	u	(5)	6	7	8	9	(10)	
	$\mathrm{P}(U=u)$	(0.1692)	0.1742	0.1492	0.1087	0.0682	(0.0373)	
					3			

Q	Solution	Marks	Total	Comments
5	Alternative solutions and additional guidelines			
(b)	Attempt at $\sum x \sum x^{2} \sum y \& \sum x y\left(\sum y^{2}\right)$ or Attempt at $S_{x x} \& S_{x y}\left(S_{y y}\right)$ Attempt at correct formula for b (gradient) b (gradient) $=-0.076$ a (intercept) $=5.35$ to 5.36 Thus $y=(5.35$ to 5.36$)-0.076 x$ Notes: 1 If a and b interchanged and equation $y=a x+b$ used \Rightarrow max of 5 marks 2 If a and b interchanged and equation $y=a+b x$ used \Rightarrow maximum of BF1 3 Marks lost here cannot be gained from subsequent work in parts (d) and/or (e)	M1 m1 A1 A1 BF1	5	4552047535.1 \& 883.5 (121.33) (all 4 attempted) $4550 \&-345$ (26.56) (both attempted) AWRT AWFW F on a and b even if rounded If a and b are not identified anywhere in equation, then: $\begin{array}{ccc} -0.07 \text { to }-0.08 & \Rightarrow \text { B1 } \\ 5.1 \text { to } 5.6 & \Rightarrow \text { B1 } \end{array}$
(d)	$\begin{aligned} & y_{27}=(5.35 \text { to } 5.36)-0.076 \times 27 \\ & =3.28 \text { to } 3.32 \end{aligned}$	M1 A1	2	Clear evidence of correct use of c's equation with $x=27$ AWFW (3.30659)
(e)	$\begin{aligned} & r(35,2.5)=2.5-y_{35} \\ & \quad=2.5-\{(5.35 \text { to } 5.36)-0.076 \times 35\} \\ & =-0.21 \text { to }-0.19 \end{aligned}$	M1 A1	2	Used; allow $y_{35}-2.5$ AWFW (-0.20000)

MS/SS1B (cont)				
Q	Solution	Marks	Total	Comments
$\begin{gathered} 7 \\ \text { (a)(ii) } \end{gathered}$	Alternative solutions			
	$\begin{aligned} & \mathrm{P}\left(X<0 \mid \mathrm{N}\left(45.8,24.0^{2}\right)=\mathrm{P}(Z<-1.91)\right. \\ & =0.027 \text { to } 0.03 \end{aligned}$	M1 A1	2	Standardising 0 using $45.8 \& 24.0$ In addition to probability within range, must state that negative salaries are impossible
	$\begin{aligned} & \mathrm{P}\left(X>60 \mid \mathrm{N}\left(45.8,24.0^{2}\right)\right)=\mathrm{P}(Z>0.59) \\ & =0.27 \text { to } 0.28 \end{aligned}$	M1 A1	2	Standardising 60 using $45.8 \& 24.0$ In addition to probability within range, must compare calculated value to $6 / 50=0.12 \mathrm{OE}$
(c)	Additional comment illustrations			
	It/(claimed) mean/(claimed) value > UCL/CI 99\% have (mean) weights between CLs so ... Any comparison of $60(£ 60000)$ with UCL/CI $\begin{aligned} & \mathrm{P}\left(X>60 \mid \mathrm{N}\left(45.8,24.0^{2}\right)\right)=\mathrm{P}(Z>0.59) \\ & =(0.27 \text { to } 0.28)>6 / 50=0.12 \end{aligned}$	$\begin{aligned} & \text { B0 } \\ & \text { B0 } \\ & \text { B0 } \\ & \text { B0 } \end{aligned}$		Must indicate 55 or 55000 Value of 60 does not refer to mean Assumes salaries $\sim \mathrm{N}$; cf (a)(ii)

