MATHEMATICS

MPC4

Unit Pure Core 4

Thursday 11 June 20099.00 am to 10.30 am

For this paper you must have:

- an 8-page answer book
- the blue AQA booklet of formulae and statistical tables. You may use a graphics calculator.

Time allowed: 1 hour 30 minutes

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Write the information required on the front of your answer book. The Examining Body for this paper is AQA. The Paper Reference is MPC4.
- Answer all questions.
- Show all necessary working; otherwise marks for method may be lost.

Information

- The maximum mark for this paper is 75 .
- The marks for questions are shown in brackets.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.

Answer all questions.

1 (a) Use the Remainder Theorem to find the remainder when $3 x^{3}+8 x^{2}-3 x-5$ is divided by $3 x-1$.
(b) Express $\frac{3 x^{3}+8 x^{2}-3 x-5}{3 x-1}$ in the form $a x^{2}+b x+\frac{c}{3 x-1}$, where a, b and c are integers.

2 A curve is defined by the parametric equations

$$
x=\frac{1}{t}, \quad y=t+\frac{1}{2 t}
$$

(a) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of t.
(b) Find an equation of the normal to the curve at the point where $t=1$.
(c) Show that the cartesian equation of the curve can be written in the form

$$
x^{2}-2 x y+k=0
$$

where k is an integer.

3 (a) Find the binomial expansion of $(1-x)^{-1}$ up to and including the term in x^{2}.
(b) (i) Express $\frac{3 x-1}{(1-x)(2-3 x)}$ in the form $\frac{A}{1-x}+\frac{B}{2-3 x}$, where A and B are integers.
(ii) Find the binomial expansion of $\frac{3 x-1}{(1-x)(2-3 x)}$ up to and including the term in x^{2}.
(c) Find the range of values of x for which the binomial expansion of $\frac{3 x-1}{(1-x)(2-3 x)}$ is valid.

4 A car depreciates in value according to the model

$$
V=A k^{t}
$$

where $£ V$ is the value of the car t months from when it was new, and A and k are constants. Its value when new was $£ 12499$ and 36 months later its value was $£ 7000$.
(a) (i) Write down the value of A.
(ii) Show that the value of k is 0.984025 , correct to six decimal places.
(b) The value of this car first dropped below $£ 5000$ during the nth month from new. Find the value of n.

5 A curve is defined by the equation $4 x^{2}+y^{2}=4+3 x y$.
Find the gradient at the point $(1,3)$ on this curve.

6 (a) (i) Show that the equation $3 \cos 2 x+7 \cos x+5=0$ can be written in the form $a \cos ^{2} x+b \cos x+c=0$, where a, b and c are integers.
(ii) Hence find the possible values of $\cos x$.
(b) (i) Express $7 \sin \theta+3 \cos \theta$ in the form $R \sin (\theta+\alpha)$, where $R>0$ and α is an acute angle. Give your value of α to the nearest 0.1°.
(ii) Hence solve the equation $7 \sin \theta+3 \cos \theta=4$ for all solutions in the interval $0^{\circ} \leqslant \theta \leqslant 360^{\circ}$, giving θ to the nearest 0.1°.
(c) (i) Given that β is an acute angle and that $\tan \beta=2 \sqrt{2}$, show that $\cos \beta=\frac{1}{3}$.
(ii) Hence show that $\sin 2 \beta=p \sqrt{2}$, where p is a rational number.

Turn over for the next question

7 The points A and B have coordinates $(3,-2,5)$ and $(4,0,1)$ respectively.

The line l_{1} has equation $\mathbf{r}=\left[\begin{array}{r}6 \\ -1 \\ 5\end{array}\right]+\lambda\left[\begin{array}{r}2 \\ -1 \\ 4\end{array}\right]$.
(a) Find the distance between the points A and B.
(b) Verify that B lies on l_{1}.
(c) The line l_{2} passes through A and has equation $\mathbf{r}=\left[\begin{array}{r}3 \\ -2 \\ 5\end{array}\right]+\mu\left[\begin{array}{r}-1 \\ 3 \\ -8\end{array}\right]$.

The lines l_{1} and l_{2} intersect at the point C. Show that the points A, B and C form an isosceles triangle.

8 (a) Solve the differential equation

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}=\frac{150 \cos 2 t}{x}
$$

given that $x=20$ when $t=\frac{\pi}{4}$, giving your solution in the form $x^{2}=\mathrm{f}(t) . \quad(6$ marks)
(b) The oscillations of a 'baby bouncy cradle' are modelled by the differential equation

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}=\frac{150 \cos 2 t}{x}
$$

where $x \mathrm{~cm}$ is the height of the cradle above its base t seconds after the cradle begins to oscillate.

Given that the cradle is 20 cm above its base at time $t=\frac{\pi}{4}$ seconds, find:
(i) the height of the cradle above its base 13 seconds after it starts oscillating, giving your answer to the nearest millimetre;
(2 marks)
(ii) the time at which the cradle will first be 11 cm above its base, giving your answer to the nearest tenth of a second.
(2 marks)

END OF QUESTIONS

