MATHEMATICS

MPC3

Unit Pure Core 3

Monday 19 January 20091.30 pm to 3.00 pm

For this paper you must have:

- an 8-page answer book
- the blue AQA booklet of formulae and statistical tables
- an insert for use in Question 3 (enclosed).

You may use a graphics calculator.

Time allowed: 1 hour 30 minutes

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Write the information required on the front of your answer book. The Examining Body for this paper is AQA. The Paper Reference is MPC3.
- Answer all questions.
- Show all necessary working; otherwise marks for method may be lost.
- Fill in the boxes at the top of the insert.

Information

- The maximum mark for this paper is 75 .
- The marks for questions are shown in brackets.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.

Answer all questions.

1 Use Simpson's rule with 5 ordinates (4 strips) to find an approximation to $\int_{1}^{9} \frac{1}{1+\sqrt{x}} \mathrm{~d} x$, giving your answer to three significant figures.

2 The diagram shows the curve with equation $y=\sqrt{(x-2)^{5}}$ for $x \geqslant 2$.

The shaded region R is bounded by the curve $y=\sqrt{(x-2)^{5}}$, the x-axis and the lines $x=3$ and $x=4$.

Find the exact value of the volume of the solid formed when the region R is rotated through 360° about the x-axis.

3 [Figure 1, printed on the insert, is provided for use in this question.]
The curve with equation $y=x^{3}+5 x-4$ intersects the x-axis at the point A, where $x=\alpha$.
(a) Show that α lies between 0.5 and 1 .
(b) Show that the equation $x^{3}+5 x-4=0$ can be rearranged into the form

$$
\begin{equation*}
x=\frac{1}{5}\left(4-x^{3}\right) \tag{1mark}
\end{equation*}
$$

(c) Use the iteration $x_{n+1}=\frac{1}{5}\left(4-x_{n}{ }^{3}\right)$ with $x_{1}=0.5$ to find x_{3}, giving your answer to three decimal places.
(d) The sketch on Figure 1 shows parts of the graphs of $y=\frac{1}{5}\left(4-x^{3}\right)$ and $y=x$, and the position of x_{1}.

On Figure 1, draw a cobweb or staircase diagram to show how convergence takes place, indicating the positions of x_{2} and x_{3} on the x-axis.

4 (a) Solve the equation $\sec x=\frac{3}{2}$, giving all values of x to the nearest degree in the interval $0^{\circ}<x<360^{\circ}$.
(b) By using a suitable trigonometrical identity, solve the equation

$$
2 \tan ^{2} x=10-5 \sec x
$$

giving all values of x to the nearest degree in the interval $0^{\circ}<x<360^{\circ}$.

5 The functions f and g are defined with their respective domains by

$$
\begin{array}{ll}
\mathrm{f}(x)=2-x^{4} & \text { for all real values of } x \\
\mathrm{~g}(x)=\frac{1}{x-4} & \text { for real values of } x, x \neq 4
\end{array}
$$

(a) State the range of f .
(b) Explain why the function f does not have an inverse.
(c) (i) Write down an expression for $\mathrm{fg}(x)$.
(ii) Solve the equation $\operatorname{fg}(x)=-14$.

6 A curve has equation $y=\mathrm{e}^{2 x}\left(x^{2}-4 x-2\right)$.
(a) Find the value of the x-coordinate of each of the stationary points of the curve.
(6 marks)
(b) (i) Find $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$.
(ii) Determine the nature of each of the stationary points of the curve.

7 (a) Given that $3 \mathrm{e}^{x}=4$, find the exact value of x.
(b) (i) By substituting $y=\mathrm{e}^{x}$, show that the equation $3 \mathrm{e}^{x}+20 \mathrm{e}^{-x}=19$ can be written as $3 y^{2}-19 y+20=0$.
(ii) Hence solve the equation $3 \mathrm{e}^{x}+20 \mathrm{e}^{-x}=19$, giving your answers as exact values.
(3 marks)

8 The sketch shows the graph of $y=\cos ^{-1} x$.

(a) Write down the coordinates of P and Q, the end points of the graph.
(b) Describe a sequence of two geometrical transformations that maps the graph of $y=\cos ^{-1} x$ onto the graph of $y=2 \cos ^{-1}(x-1)$.
(c) Sketch the graph of $y=2 \cos ^{-1}(x-1)$.
(d) (i) Write the equation $y=2 \cos ^{-1}(x-1)$ in the form $x=\mathrm{f}(y)$.
(ii) Hence find the value of $\frac{\mathrm{d} x}{\mathrm{~d} y}$ when $y=2$.

9 (a) Given that $y=\frac{4 x}{4 x-3}$, use the quotient rule to show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{k}{(4 x-3)^{2}}$, where k is an integer.
(b) (i) Given that $y=x \ln (4 x-3)$, find $\frac{\mathrm{d} y}{\mathrm{~d} x}$.
(ii) Find an equation of the tangent to the curve $y=x \ln (4 x-3)$ at the point where $x=1$.
(c) (i) Use the substitution $u=4 x-3$ to find $\int \frac{4 x}{4 x-3} \mathrm{~d} x$, giving your answer in terms of x.
(ii) By using integration by parts, or otherwise, find $\int \ln (4 x-3) \mathrm{d} x$.

There are no questions printed on this page

There are no questions printed on this page

There are no questions printed on this page

