

General Certificate of Education

Mathematics 6360

MPC3 Pure Core 3

Mark Scheme

2008 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2008 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme and abbreviations used in marking

M	mark is for method							
m or dM	mark is dependent on one or more M marks and is for method							
A	mark is dependent on M or m marks and is for accuracy							
В	mark is independent of M or m marks and is for method and accuracy							
Е	mark is for explanation							
$\sqrt{\text{or ft or F}}$	follow through from previous							
	incorrect result	MC	mis-copy					
CAO	correct answer only	MR	mis-read					
CSO	correct solution only	RA	required accuracy					
AWFW	anything which falls within	FW	further work					
AWRT	anything which rounds to	ISW	ignore subsequent work					
ACF	any correct form	FIW	from incorrect work					
AG	answer given	BOD	given benefit of doubt					
SC	special case	WR	work replaced by candidate					
OE	or equivalent	FB	formulae book					
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme					
–x EE	deduct x marks for each error	G	graph					
NMS	no method shown	c	candidate					
PI	possibly implied	sf	significant figure(s)					
SCA	substantially correct approach	dp	decimal place(s)					

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

MPC3

Q	Solution	Marks	Total	Comments
1(a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 5(3x+1)^4 \times 3$	M1		$k(3x+1)^4$
	$=15(3x+1)^4$	A1	2	with no further errors (w.n.f.e)
(b)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{3}{3x+1}$	M1 A1	2	$\frac{k}{3x+1}$ w.n.f.e
(c)	$\frac{dy}{dx} = (3x+1)^5 \times \frac{3}{3x+1} + \ln(3x+1) \times 15(3x+1)^4$ $= (3x+1)^4 \left[3 + 15\ln(3x+1) \right]$ $= 3(3x+1)^4 \left[1 + 5\ln(3x+1) \right]$	M1 A1 A1	3	product rule $uv' + u'v$ (from (a) and (b)) either term correct CSO with no further errors
	Total		7	
2(a)	$x = \cos^{-1}\frac{1}{3}$	M1		PI
	$=1.23, 5.05 \qquad (0.39\pi, 1.61\pi)$	A1,A1	3	AWRT (-1 for each error in range) SC 70.53, 289.47 B1
(b)	$\sec^2 x - 1 = 2\sec x + 2$ $\sec^2 x - 2\sec x - 3 = 0$	M1 A1	2	use of $\sec^2 x = 1 + \tan^2 x$ AG; CSO
(c)	$\sec^2 x - 2\sec x - 3 = 0$ $(\sec x - 3)(\sec x + 1) = 0$	M1		attempt to solve
	$\cos x = \frac{1}{3} \text{ or } -1 \qquad \text{o.e}$	A1		
	x = 1.23, 5.05,	B1f		(2 answers in range from (a)) AWRT
	3.14 (π)	B1	4	all correct and no extras in range SC 70.53, 289.47, 180 B1
	Total		9	

(Extra +c penalised once throughout paper)

Q	Solution	Marks	Total	Comments
3(a)	$\frac{dy}{dx} = -x 2 \sin 2x + \cos 2x$	M1		product rule $kx \sin 2x \pm \cos 2x$
3(a)	$\frac{-xz\sin 2x+\cos 2x}{\mathrm{d}x}$	A1	2	no further incorrect working
(b)(i)	$-2\alpha\sin 2\alpha + \cos 2\alpha = 0$	M1		replacing $x = \alpha$ and writing equation equal to zero (at any line)
	$2\alpha \sin 2\alpha = \cos 2\alpha$ either			
	$2\alpha \tan 2\alpha = 1$ either			
	$2\alpha \tan 2\alpha - 1 = 0$	A1	2	AG; CSO
	20 (41) 20 1 0	AI	2	AG, CSO
	f(0.4) = 0.2			
(ii)	f(0.4)=0.2 awrt o.e.	M1		(0.9's unsubstantiated scores M0)
	,	A 1	2	
	Change of sign $\therefore 0.4 < \alpha < 0.5$	A1	2	
(iii)	$2x \tan 2x = 1$			
(111)				
	$\tan 2x = \frac{1}{2}$			
	$\left\langle \begin{array}{c} 2x \\ 1 \end{array} \right\rangle$ either			
	$\tan 2x = \frac{1}{2x}$ $2x = \tan^{-1} \left(\frac{1}{2x}\right)$ either			
	$x = \frac{1}{2} \tan^{-1} \left(\frac{1}{2x} \right)$	B1	1	AG; CSO
	$2 \qquad (2x)$	21	-	110, 020
(iv)	$x_1 = 0.4$			
	$x_2 = 0.4480$	M1		$x_2 = 25.7$
	$x_3 = 0.4200$			
	= 0.42	A1	2	
(c)	$y = x \cos 2x$			
	u = x $du = 1$			differentiate one term
	$dv = \cos 2x v = \frac{\sin 2x}{2}$	M1		\Rightarrow must be $k \sin 2x = 1$
	$dv = \cos 2x v = \frac{1}{2}$			integrate one term
		m1		correct substitution of their values into
				parts formula using $u = x$
	$\int = \frac{x \sin 2x}{2} - \int \frac{\sin 2x}{2} (dx)$			
	$\begin{bmatrix} x \sin 2x & \cos 2x \end{bmatrix}^{(0.5)}$			
	$= \left[\frac{x \sin 2x}{2} + \frac{\cos 2x}{4} \right]_{(0)}^{(0.5)}$	A1		
	* /			
	$= \left(\frac{\sin 1}{4} + \frac{\cos 1}{4}\right) - \left(\frac{\cos 0}{4}\right)$	m1		correctly substituting values from previous 2 method marks
		A 1	5	-
	= 0.0954 Total	A1	5 14	AWRT
	10tai		14	

Q	Solution	Marks	Total	Comments
4(a)	$f(x) \geqslant 0$	B1	1	allow $f \geqslant 0, y \geqslant 0, \geqslant 0$
(b)(i)	$y = \frac{1}{2x - 3}$ $x = \frac{1}{2y - 3}$ $x(2y - 3) = 1$	M1		swap x and y
	2xy - 3x = 1 $2xy = 1 + 3x$	M1		attempt to isolate
	$y = \frac{1+3x}{2x} = g^{-1}(x)$ o.e.	A1	3	w.n.f.e
(ii)	$\left(\mathbf{g}^{-1}(x)\right) \neq \frac{3}{2}$	B1	1	
(c)	$\left(\frac{1}{2x-3}\right)^2 = 9$	B1		
	$\left(g^{-1}(x)\right) \neq \frac{3}{2}$ $\left(\frac{1}{2x-3}\right)^2 = 9$ $2x-3 = \pm \frac{1}{3}$	M1		square root and invert (condone missing \pm) alternative: attempt to solve a quadratic that comes from $4x^2-12+9=\frac{1}{9}$ o.e.
	$x = \frac{5}{3}, \frac{4}{3}$ o.e.	A1	3	
	Total		8	

Alternative

4(b)(i)	$x \to \boxed{\times 2} \to \boxed{-3} \to \boxed{\text{divide into1}} \to y$		
	$\frac{1}{2y} + \frac{3}{2} \leftarrow \boxed{\div 2} \leftarrow \boxed{+3} \leftarrow \boxed{\text{divide into 1}} \leftarrow y$		
	$\frac{1}{y} + 3$		
	M1		

Q Q	Solution	Marks	Total	Com	ments
5(a)(i)	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				
		B1		shape	
	(0,b)	B1	2	coordinates	
	(a,0) x				
(ii)	<i>y</i> • • • • • • • • • • • • • • • • • • •				
	(a,0) x				
		B1		shape	
	(0,-2b)	B1	2	coordinates	
(b)(i)	Translation	M1			OR I stretch M1 I +
	$\begin{bmatrix} -1 \\ 0 \end{bmatrix}$	A1			(II or III) II SF 4 III // y-axis A1 (I + II + III)
	Stretch I	M1		I+(II or III)	Translation M1
	SF 4 II // y-axis III	A1		I + II + III	$\begin{bmatrix} -1 \\ -2 \end{bmatrix} \qquad \begin{array}{c} A1 \\ B1 \end{array}$
	Translation $\begin{bmatrix} 0 \\ -2 \end{bmatrix}$	B1		both	
	All correct and no mistakes on order etc Alternative:	A1	6		All correct A1
	$y = 4 \ln(x+1) - 2 = 4 \left[\ln(x+1) - \frac{1}{2} \right]$	(B1)			
	Translation	(M1)			
	$\begin{bmatrix} -1 \\ -\frac{1}{2} \end{bmatrix}$	(A1)			
	Stretch I	(M1)		I + (II or III)	
	SF 4 II // y-axis III All correct and no mistakes on order etc.	(A1)	(6)	I + II + III	
	All correct and no mistakes on order etc	(A1)	(6)		

Q Q	Solution	Marks	Total	Comments
5(b)(ii)				
	x = 0 y = -2 y = 0	B1	! 	
	y = 0		ı İ	
	$4\ln(x+1) = 2$		l 	
	$4\ln(x+1) = 2$ $\ln(x+1) = \frac{1}{2}$	M1	l 	isolate $\ln(x+1) = $ or $(x+1)^4$
	$x+1=e^{\frac{1}{2}}$	A1	l 	$x+1=e^k$
	$x = e^{\frac{1}{2}} - 1$ o.e.	A1	4	CSO isw
	Total		14	
6(a)	$y = (e^{3x} + 1)^{\frac{1}{2}}$		— <u>—</u>	
	$y = (e^{3x} + 1)^{\frac{1}{2}}$ $\frac{dy}{dx} = \frac{1}{2} (e^{3x} + 1)^{-\frac{1}{2}} \times 3e^{3x}$	M1	l 	$\frac{1}{2}(e^{3x}+1)^{-\frac{1}{2}}$
	u. 2	A1	l 	
		A1	l 	$\begin{bmatrix} \frac{1}{2} & \frac{3}{2} & \frac{1}{2} & \frac{1}{2} \times 3 \end{bmatrix}$ w.n.f.e
	$x = \ln 2$:		l 	<u> </u>
	$\frac{dy}{dx} = \frac{3}{2} \left(e^{\ln 8} + 1 \right)^{-\frac{1}{2}} \times e^{\ln 8}$	M1	ı İ	correct substitution into their $\frac{dy}{dx}$
	ut 2.	1,11	l 	(must use ln8 or ln2 ³)
	$=\frac{3}{2}\times\frac{1}{3}\times8$		l 	
	$= \frac{2}{3}$	A1	5	
	,		 	
(b)	$\begin{array}{c cc} x & y \\ \hline 0.25 & 1.765(5) \end{array}$		 	
	0.75 3.238(5)	B1		correct x values
	1.25 6.597(1) 1.75 13.84(1)	B1	 	3 or 4 correct y values 4 s.f. or better
	$\int = 0.5 \times \sum y \qquad P.I$	M1	 	Size of oction
	= 12.7	A1	4	sc 12.7 with no working $\frac{2}{4}$
(-)		111	, ⁻ Ŧ	/4
(c)	$= (\pi) \int (\alpha^{3x} + 1) (dx)$	1.61		
	$= (\pi) \int (e^{-x} + 1) (dx)$	M1		
	$v = \pi \int y^2 dx$ $= (\pi) \int (e^{3x} + 1) (dx)$ $= (\pi) \left[\frac{1}{3} e^{3x} + x \right]_{(0)}^{(2)}$	A1	ı İ	$ke^{3x} + x$
	$= (\pi) \left[\left(\frac{1}{3} e^6 + 2 \right) - \left(\frac{1}{3} e^0 + 0 \right) \right]$	m1		correct substitution into f $(\int e^{3x})$
	$=\pi \left[\frac{1}{3}e^6 + \frac{5}{3}\right]$ $\left(=\frac{\pi}{3}(e^6 + 5)\right)$	A1	4	CSO
	$\left(=\frac{\pi}{3}(e^6+5)\right)$		l 	
	Total		13	
	1000			<u>I</u>

MPC3 (cont						
Q	Solu	ıtion		Marks	Total	Comments
7(a)	$y = \frac{\sin \theta}{\cos \theta}$					
	$\frac{\mathrm{d}y}{\mathrm{d}z} = \frac{\cos\theta\cos\theta - \sin\theta}{2}$	$\theta(-\sin\theta)$		M1		$\pm \cos^2 \theta \pm \sin^2 \theta$
	$\frac{d\theta}{d\theta} = \frac{\cos^2 \theta}{\cos^2 \theta}$	9		A1		$\frac{\cos^2 \theta}{\cos^2 \theta}$
			0.0			$(1+\tan^2\theta)$
	$=\frac{1}{\cos^2\theta}$		o.e.			$(1 + \tan \theta)$
	$= \sec^2 \theta$			A1	3	AG; CSO
		1				
(b)	$x = \sin \theta$	OR LHS =				
	2 2 0	$\frac{\sin\theta}{\sqrt{1-\sin^2\theta}}$				
	$x^2 = \sin^2 \theta$					
	$\cos^2\theta = 1 - x^2$	$=\frac{\sin\theta}{\cos\theta}$		M1		use of $\cos^2 \theta + x^2 = 1$
	$\cos^2\theta = 1 - x^2$	$\cos \theta$				
	$\tan \theta = \frac{\sin \theta}{\cos \theta}$					
	$=\frac{x}{\sqrt{1-x^2}}$	$= \tan \theta$	AG	A1	2	AG; CSO
	$\sqrt{1-x}$					
	c 1					
(c)	$\int \frac{1}{\left(1 - x^2\right)^{\frac{3}{2}}} \mathrm{d}x$ $x = \sin \theta$					
	$(1-x^2)^2$					
	$x = \sin \theta$					
	$dx = \cos\theta d\theta$		o.e.	M1		$\frac{\mathrm{dx}}{\mathrm{d}\theta} = \pm \cos\theta$
	0 (10)					$\mathrm{d} heta$
	$\int = \int \frac{\cos \theta (\mathrm{d}\theta)}{3}$			m 1		all in terms of θ
	$(1-\sin^2\theta)^{\frac{3}{2}}$			m1		
	$\cos \theta$					
	$\int = \int \frac{\cos \theta (d\theta)}{\left(1 - \sin^2 \theta\right)^{\frac{3}{2}}}$ $= \int \frac{\cos \theta}{\left(\cos^2 \theta\right)^{\frac{3}{2}}} (d\theta)$			A1		
	$(\cos^2\theta)^2$					
	$= \int \sec^2 \theta (\mathrm{d} \theta)$			A1		
	$= \int \sec^2 \theta (d\theta)$ $= \tan \theta$ $= \frac{x}{\sqrt{1 - x^2}} (+c)$					
	$=\frac{x}{\sqrt{1-x^2}}$ (+c)			A1	5	CSO including $d\theta$'s
	$\sqrt{1-x^2}$					0
			Total		10	
		T	OTAL		75	

Alternative

7(a)	$y = \frac{\tan \theta}{1}$			
	$\frac{\mathrm{d}y}{\mathrm{d}\theta} = \frac{1\sec^2\theta - 0}{1^2}$	M1 A1		
	$=\sec^2\theta$	A1		