

General Certificate of Education (A-level)
June 2011

Mathematics

MM2B

(Specification 6360)

Mechanics 2B

Final

Mark Scheme

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aga.org.uk

Copyright © 2011 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334).

Registered address: AQA, Devas Street, Manchester M15 6EX.

Key to mark scheme abbreviations

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
√or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
–x EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

MM2B

Q Q	Solution	Marks	Total	Comments
			1 otai	M1: Correct fully substituted expression
1(a)	$KE = \frac{1}{2} \times 58 \times 2^2$	M1		for KE.
	= 116 J	A1	2	A1: CAO
(b)	Change in PE: $mgh = 58 \times 9.8 \times 7$	M1		M1: Expression for PE with 58 and 9.8 or 9.81 with 6 or 7 for the height (or 11 and
	= 3978.8	A1		4, 11 and 5 or 10 and 4). A1: Accept 3980 or 3970 or 3978 or 3979 or 3978.8. Accept 3982 or 3983 or 3980.
	KE = 3978.8 + 116 J = 4094.8 J	M1		M1: Adding their two previous answers.
	Speed of Kim is $\sqrt{\frac{4094.8}{\frac{1}{2} \times 58}}$ = 11.88 m s ⁻¹	dM1		dM1: Seeing expression for v (not v^2), dependent on second M1
	$= 11.9 \text{ m/s}^{-1}$	A1	5	A1: Accept 11.88 or 11.8 or 11.9 Accept 11.88 or 11.8 or 11.9 or AWRT 11.89 from $g = 9.81$.
				Obtaining $v = \sqrt{u^2 + 2gh}$ followed by incorrect substitution M0M1M1, unless h is 6 or 7, which is M1M1M1
				11.0 (from $h = 6$) M1M1M1
				$v = \sqrt{2^2 + 2 \times g \times 7} M1M1M1$
				$=\sqrt{141.2}$ A1
				=11.9 A1
				$v = \sqrt{4 + 14g} M1M1M1A1$
				$=11.9 \qquad A1$
				$v = \sqrt{2^2 + 12g} M1M1M1$
	Total		7	
	10tai		1	

Q	Solution	Marks	Total	Comments
2	$\overline{X} = \frac{2 \times 9 + 3 \times 2 + 8 \times 3 + 7 \times 6}{2 + 3 + 8 + 7}$	M1		M1: Expression for \overline{X} with no more than one error in the numerator and correct denominator.
	$=\frac{90}{20}$ or 4.5	A1		A1: Correct distance. Accept $\frac{9}{2}$ or $\frac{90}{20}$ or equivalent.
	$\overline{Y} = \frac{2 \times 6 + 3 \times 4 + 8 \times 8 + 7 \times 11}{20}$	M1		M1: Expression for \overline{Y} with no more than one error in the numerator and correct
	$=\frac{165}{20}$ or 8.25	A1		denominator. A1: Correct distance. Accept $\frac{33}{4}$ or $\frac{165}{20}$ or equivalent
	∴ Centre of mass is at (4.5, 8.25)	A1F	5	A1: Correct coordinates; dependent on M1 M1 Do not accept $\frac{90}{20}$ etc at this stage.
				SC4: For final answer (8.25, 4.5) award 4 marks. Moments about <i>B</i> , (2.5, 4.25) SC2
	Total		5	

Q Q	Solution	Marks	Total	Comments
3(a)	$\mathbf{a} = \frac{\mathrm{d}v}{\mathrm{d}t}$			
	$\mathbf{a} = -8e^{-2t}\mathbf{i} + (6-6t)\mathbf{j}$	M1 A1 A1	3	M1: Differentiating with either of the two components correct. Do not need to see i or j . A1: Correct i component. A1: Correct j component.
(b)(i)	Using $\mathbf{F} = m\mathbf{a}$ $\mathbf{F} = 5 \times \{-8e^{-2t}\mathbf{i} + (6-6t)\mathbf{j}\}$ $= -40e^{-2t}\mathbf{i} + (30-30t)\mathbf{j}$	M1 A1	2	M1: Multiplying their acceleration by 5, even if not a vector. A1: Correct expression.
(ii)	Magnitude of F is $\{(-40)^2 + (30)^2\}^{\frac{1}{2}}$	M1		M1: Finding magnitude from two non-zero terms. Must add terms and square root. Condone $\{(40)^2 + (30)^2\}^{\frac{1}{2}}$
	= 50	A1	2	A1: Correct answer only. In this part, condone lack of negative signs in expression for force in (b) (i).
(c)	When F acts due west, j component is zero $30 - 30t = 0$ $t = 1$	M1 A1	2	M1: Putting j component equal to zero. A1: Correct time.
(d)	$\mathbf{r} = -2e^{-2t}\mathbf{i} + (3t^2 - t^3)\mathbf{j} + \mathbf{c}$	M1 A1 A1		M1: Integration with either of the two components correct. Do not need to see i or j . A1: Correct i component. A1: Correct j component. Condone lack of + c
	When $t = 0$, $\mathbf{r} = 6\mathbf{i} + 5\mathbf{j}$: $\mathbf{c} = 8\mathbf{i} + 5\mathbf{j}$	dM1		dM1: Finding c using $6\mathbf{i} + 5\mathbf{j}$ and $e^0 = 1$.
	$\mathbf{r} = (8 - 2e^{-2t})\mathbf{i} + (5 + 3t^2 - t^3)\mathbf{j}$	A1	5	A1: Correct position vector.
	Total		14	

Q Q	Solution	Marks	Total	Comments
4(a)	R_C or 65g 17g R_D or C or Or Or D or 38g 637 166.6 44g	B1 B1	2	B1: Two weights correct and in correct relative positions. B1: Two upward reaction forces, labelled differently. Note all forces must be shown as arrows and have labels. Condone use of <i>g</i> = 9.81 for calculating weights.
(b)	Taking moments about C $3 \times 17g + 2.6 \times 65g = 44g \times d$ 44d = 220	B1 M1 A1		B1: Seeing 2.6. M1: Three term moment equation including 17g, 65g and 44g or 17, 65 and 44, with different distances for the 17g and 65g. A1: Correct equation.
	d = 5 Distance is $5 - 4.6 = 0.4$ m	A1	4	A1: Correct final answer.
	Alternative $R_C = 38g$ Taking moments about D $38g(4.6+x) = 65g(2+x) + 17g(1.6+x)$ $174.8 - 130 - 27.2 = 44x$ $x = 0.4$	(B1) (M1) (A1)		Could take moments about any other point
(c)	Gravitational force (centre of mass or weight) at mid-point (or centre) of the plank	(A1) E1	1	E1: Correct explanation.
	Total		7	
5(a)	$90 \mathrm{km} \mathrm{h}^{-1} = 90 \times \frac{1000}{3600} \mathrm{m} \mathrm{s}^{-1}$ $= 25 \mathrm{m} \mathrm{s}^{-1} \qquad \mathbf{AG}$	B1	1	B1: Must see $\frac{1000}{3600}$ or $\frac{1000}{60^2}$.
(b)	Resistance is 5000 N Using power = force × velocity	B1		B1: Obtaining 5000.
	Using power = force \times velocity = 5000×25	M1		M1: Using $P = Fv$ with 25 and their F .
	= 125 kW	A1	3	A1: Correct final answer, must be in kW.
				125W or 125 000 W B1M1 125 B1M1A1
	Total		4	

Q Q	Solution	Marks	Total	Comments
6(a)	Using $F = ma$			
	$-2mv^{\frac{5}{4}} = m\frac{\mathrm{d}v}{\mathrm{d}t}$ $\therefore \frac{\mathrm{d}v}{\mathrm{d}t} = -2v^{\frac{5}{4}} \qquad \mathbf{AG}$	B1	1	B1: Must see $-2mv^{\frac{5}{4}} = m\frac{dv}{dt}$ or $-2mv^{\frac{5}{4}} = ma$ and correct final answer.
(b)	$\int \frac{\mathrm{d}v}{v^{\frac{5}{4}}} = -2\int \mathrm{d}t$	M1		M1: Two integrals with one in the form $\int f(v)dv \text{ where } f(v) = v^{\pm \frac{5}{4}} \text{ or } v^{\pm \frac{4}{5}}. \text{ The other integral must not contain } v \text{ terms.}$
	$-\frac{4}{v^{\frac{1}{4}}} = -2t + c$	A1		A1: Correct expression. Condone lack of $+ c$ for this A1, but no subsequent marks if no c .
	When $t = 0$, $v = 16 \implies c = -2$	dM1 A1		dM1: Using $t = 0$ and $v = 16$ to find c . A1: Obtaining $c = -2$.
	$-\frac{4}{v^{\frac{1}{4}}} = -2t - 2$ $v^{\frac{1}{4}} = \frac{2}{1+t}$ $v = \left(\frac{2}{t+1}\right)^{4}$ AG	A1	5	A1: Correct final answer. Must see $v^{\frac{1}{4}} = \frac{2}{1+t} v^{-\frac{1}{4}} = \frac{1+t}{2} \frac{1}{v^{\frac{1}{4}}} = \frac{1+t}{2}$ Or if they obtain $v = \left(\frac{2}{t+c}\right)^4$ $v = 16, t = 0 \Rightarrow 16^{\frac{1}{4}} = \frac{2}{c}, \text{ condone } c = 1$ (no other root considered)
	Total		6	(
	Total		U	

7(a) Resolving vertically $T \cos 30 + 20 \cos 50 = 4g$			
	M1A1 A1		M1: Three terms, which must include $4g$, $T\cos\theta$ or $T\sin\theta$ and $20\cos\theta$ or $20\sin\theta$, where $\theta = 30, 40, 50$ or 60 . A1: Correct terms A1: Correct equation
$T \cos 30 = 26.344$ T = 30.4 N	A1	4	A1: Correct final answer. Accept 30.4 or AWRT 30.42. Accept 30.4 or 30.5 or AWRT 30.45 from $g = 9.81$.
(b) Horizontally: $\frac{mv^2}{r} = 20 \text{ co}$	s 40 + T cos 60 M1 A1F		M1: Three terms, which must include $\frac{mv^2}{r}$ or $\frac{4\times5^2}{r}$, $T\cos\theta$ or $T\sin\theta$ and $20\cos\theta$ or $20\sin\theta$, where $\theta=30, 40, 50$ or 60. A1F: Correct equation. May include T, m and v .
$\frac{4 \times 5^2}{r} = 30.53$ $r = 3.27537$	dM1		dM1: Substitution of values for T , m and v . Equation of form $\frac{4 \times 5^2}{r}$ = number
7 - 3.27337 = 3.28	A1	4	A1: Correct answer. Accept 3.27 or 3.28 or AWRT 3.28. Accept 3.27 or AWRT 3.27 from $g = 9.81$. Note: Do not accept $\frac{mv^2}{r} = 30.4$ or similar.
	Total	8	

AM2B (con Q	Solution	Marks	Total	Comments
8(a)	Using conservation of energy			
	(lowest and highest points)			
	$\frac{1}{2}mu^2 = \frac{1}{2}mv^2 + mg(2a)$	M1A1		M1: Equation for conservation of energy with two KE terms and one or two PE
				terms. May see <i>m</i> or 0.3.
				A1: Correct equation.
	$u^2 = v^2 + 4ag$			
	For complete revolutions, $v > 0$			
	$\therefore u^2 > 4ag$			
	$u > 2\sqrt{ag}$ AG	A1	3	A1: Correct result with statement of $v > 0$
				and some intermediate working including 4ag term.
	Or			Hug term.
	Use of PE at top and KE at B	(M1)		
	Correct PE and KE	(A1)		
	Correct deduction including inequality	(A1)		
(b)(i)	C of Energy			
				M1: Equation for conservation of energy
	$\frac{1}{2}mu^2 = \frac{1}{2}mv^2 + mga(1 + \sin\theta)$	M1A1		with two KE terms and one or two PE
				terms including a $\sin \theta$. May see <i>m</i> or 0.3. A1: Correct equation.
	$v^2 = \left(\sqrt{\frac{9}{2}ag}\right)^2 - 2ga(1 + \sin\theta)$			1
	$=\frac{5}{2}ag-2ag\sin\theta$			
	Resolve radially			M1. Thus tame a gration from machine
	$\pm R = -mg\sin\theta + \frac{mv^2}{a}$	M1A1		M1: Three term equation from resolving radially. Correct three terms, but condone
	a	1,1111		signs and replacement of sin by cos.
				A1: Correct equation. May see <i>m</i> or 0.3.
	$= -mg\sin\theta + \frac{5}{2}mg - 2mg\sin\theta$			
	<u> </u>			
	$=-3mg\sin\theta+\frac{5}{2}mg$			
	_			A1: Simplified correct final answer.
	$= \left(\frac{3}{4} - \frac{9}{10}\sin\theta\right)g \text{ OE (must include } g)$	A1	5	Condone $\left(\frac{9}{10}\sin\theta - \frac{3}{4}\right)g$
	(4 10)			$\left(\frac{10}{10}\sin\theta - \frac{1}{4}\right)^g$
(ii)	When this reaction is zero,			
	$\left(\frac{3}{4} - \frac{9}{10}\sin\theta\right)g = 0$	M1		M1: Putting their reaction equal to zero.
	$\sin\theta = \frac{5}{6}$			
	θ is 56.4° above horizontal	A1	2	A1: Correct angle. Accept AWRT 56.44.
	Total		10	

MM2B (con	Solution	Marks	Total	Comments
9(a)	$EPE = \frac{\lambda x^2}{2I}$			
	$\angle \iota$	B1		B1: Extension = 4.
	$= \frac{1800\times(4)^2}{2\times6}$	M1		M1: Substitution of 6, 1800 and their
	= 2400 J	A1	3	extension into EPE formula. A1: Correct EPE
(b)	_ 21003		3	
	$\frac{1800 \times (x)^2}{2 \times 6} = \frac{1}{2} \times 200 \times 8^2$	M1		M1: Equation with EPE and KE terms, both correct.
	$x^2 = 42.67$			9.16
	x = 6.53 m	A1		A1: Correct extension. Accept $\frac{8\sqrt{6}}{3}$ or
				6.53 or AWRT 6.532.
	Distance from O is 12.5 m	A1	3	A1: Correct distance. Accept 12.5 or AWRT 12.53.
(c)	Resistance force is 800 N			
	Work done by resistance force is	B1		D1. Compet week done by resistance
	$800 \times (x+6)$	В1		B1: Correct work done by resistance force.
	C of Energy gives			
	$\frac{1800 \times (x)^2}{2 \times 6} + 800 \times (x+6) = \frac{1}{2} \times 200 \times 8^2$	M1A1 A1		M1: Three energy terms, KE, Work Done and EPE.
	2×0 2			A1: EPE correct.
	170 2 0007 6 6400			A1: Correct equation.
	$150x^2 + 800(x+6) = 6400$	A1		A1: Correct quadratic aquation with no
	$3x^{2} + 16x - 32 = 0$ or $150x^{2} + 800x - 1600 = 0$	Ai		A1: Correct quadratic equation with no brackets.
				dM1: Solving their quadratic equation
	$x = \frac{-16 \pm \sqrt{16^2 + 4 \times 3 \times 32}}{2 \times 3}$	dM1		with correct formula and correct substitution
	x = 1.5497	A1		A1: Correct positive solution stated. Accept 1.54 or 1.55 or AWRT 1.55.
	Distance from <i>O</i> is 7.55 m	A1	8	A1: Correct distance from <i>O</i> . Accept 7.55
	OB			or 7.54 or AWRT 7.55.
	OR Use <i>d</i> for distance:			
	$800 \times d$	(B1)		B1: Correct work done by resistance
	C of Energy gives	(M1A1)		force.
	$\frac{1800 \times (d-6)^2}{2 \times 6} + 800 \times d = \frac{1}{2} \times 200 \times 8^2$	(A1A1)		M1: Three energy terms, KE, Work Done and EPE.
	$150d^2 - 1000d - 1000 = 0$	(A1)		A1: Seeing $d - 6$ in EPE
	$3d^2 - 20d - 20 = 0$			A1: EPE correct. A1: Correct equation.
	$x = \frac{-20 \pm \sqrt{20^2 + 4 \times 3 \times 20}}{2 \times 3}$	(dM1)		A1: Correct quadratic equation with no
		(A1)		brackets. dM1: Solving their quadratic equation.
	d = 7.55	(A1)		A1: Correct distance from <i>O</i> . Accept 7.55
				or 7.54 or AWRT 7.55.
	Total		14	
	TOTAL		75	