General Certificate of Education
June 2008
Advanced Subsidiary Examination

ASSESSMENT and
MATHEMATICS
MM1A/W

Unit Mechanics 1A

Monday 2 June 20089.00 am to 10.15 am

For this paper you must have:

- an 8-page answer book
- the blue AQA booklet of formulae and statistical tables.

You may use a graphics calculator.

Time allowed: 1 hour 15 minutes

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Write the information required on the front of your answer book. The Examining Body for this paper is AQA. The Paper Reference is MM1A/W.
- Answer all questions.
- Show all necessary working; otherwise marks for method may be lost.
- The final answer to questions requiring the use of calculators should be given to three significant figures, unless stated otherwise.
- Take $g=9.8 \mathrm{~m} \mathrm{~s}^{-2}$, unless stated otherwise.

Information

- The maximum mark for this paper is 60 .
- The marks for questions are shown in brackets.
- Unit Mechanics 1A has a written paper and coursework.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.

Answer all questions.

1 The diagram shows a velocity-time graph for a lift.

(a) Find the distance travelled by the lift.
(b) Find the acceleration of the lift during the first 4 seconds of the motion.
(c) The lift is raised by a single vertical cable. The mass of the lift is 400 kg . Find the tension in the cable during the first 4 seconds of the motion.

2 The diagram shows three forces and the perpendicular unit vectors \mathbf{i} and \mathbf{j}, which all lie in the same plane.

(a) Express the resultant of the three forces in terms of \mathbf{i} and \mathbf{j}.
(b) Find the magnitude of the resultant force.
(c) Draw a diagram to show the direction of the resultant force, and find the angle that it makes with the unit vector \mathbf{i}.

3 Two particles, A and B, are connected by a light inextensible string, which passes over a smooth peg. Particle A is on a rough horizontal surface and has mass 3 kg . Particle B hangs freely, as shown in the diagram, and has mass 2 kg . The coefficient of friction between A and the horizontal surface is μ.

The particles are released from rest and move with a constant acceleration of magnitude $0.9 \mathrm{~m} \mathrm{~s}^{-2}$.
(a) Find the tension in the string.
(3 marks)
(b) Draw and label a diagram to show the forces acting on particle A.
(c) Calculate the magnitude of the normal reaction force acting on A.
(d) Find the magnitude of the friction force that acts on A.
(e) Find μ.
(2 marks)

4 An aeroplane is travelling due north at $180 \mathrm{~m} \mathrm{~s}^{-1}$ relative to the air. The air is moving north-west at $50 \mathrm{~m} \mathrm{~s}^{-1}$.
(a) Find the magnitude of the resultant velocity of the aeroplane.
(b) Find the direction of the resultant velocity, giving your answer as a three-figure bearing to the nearest degree.

5 A ball is kicked so that it leaves a horizontal surface, at the point A, travelling at $16 \mathrm{~m} \mathrm{~s}^{-1}$ and at an angle θ above the horizontal. The ball hits the surface again 2 seconds later, at the point B. Assume that the ball is a particle that moves only under the influence of gravity.
(a) Show that $\theta=37.8^{\circ}$, correct to three significant figures.
(b) Find the time for which the ball is more than 2 metres above the surface.

Turn over for the next question

6 The unit vectors \mathbf{i} and \mathbf{j} are directed east and north respectively. A helicopter moves horizontally with a constant acceleration of $(-0.4 \mathbf{i}+0.5 \mathbf{j}) \mathrm{m} \mathrm{s}^{-2}$. At time $t=0$, the helicopter is at the origin and has velocity $20 \mathbf{i} \mathrm{~m} \mathrm{~s}^{-1}$.
(a) Write down an expression for the velocity of the helicopter at time t seconds.
(b) Find the time when the helicopter is travelling due north.
(c) Find an expression for the position vector of the helicopter at time t seconds.
(2 marks)
(d) When $t=100$:
(i) show that the helicopter is due north of the origin;
(ii) find the speed of the helicopter.

7 Two particles, A and B, are travelling towards each other along a straight horizontal line.
Particle A has velocity $2 \mathrm{~m} \mathrm{~s}^{-1}$ and mass $m \mathrm{~kg}$. Particle B has velocity $-2 \mathrm{~m} \mathrm{~s}^{-1}$ and mass 3 kg .

The particles collide.
(a) If the particles move in opposite directions after the collision, each with speed $0.5 \mathrm{~m} \mathrm{~s}^{-1}$, find the value of m.
(b) If the particles coalesce during the collision, forming a single particle which moves with speed $0.5 \mathrm{~m} \mathrm{~s}^{-1}$, find the two possible values of m.

