General Certificate of Education
June 2008
Advanced Level Examination

MATHEMATICS
MFP4
Unit Further Pure 4

Wednesday 21 May $2008 \quad 1.30$ pm to 3.00 pm

For this paper you must have:

- a 12-page answer book
- the blue AQA booklet of formulae and statistical tables.

You may use a graphics calculator.

Time allowed: 1 hour 30 minutes

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Write the information required on the front of your answer book. The Examining Body for this paper is AQA. The Paper Reference is MFP4.
- Answer all questions.
- Show all necessary working; otherwise marks for method may be lost.

Information

- The maximum mark for this paper is 75 .
- The marks for questions are shown in brackets.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.

Answer all questions.

1 Find the eigenvalues and corresponding eigenvectors of the matrix $\left[\begin{array}{rr}7 & 12 \\ 12 & 0\end{array}\right]$. (6 marks)

2 The vectors \mathbf{a}, \mathbf{b} and \mathbf{c} are given by

$$
\mathbf{a}=\mathbf{i}+2 \mathbf{j}+3 \mathbf{k}, \quad \mathbf{b}=2 \mathbf{i}+\mathbf{j}+2 \mathbf{k} \quad \text { and } \quad \mathbf{c}=-2 \mathbf{i}+t \mathbf{j}+6 \mathbf{k}
$$

where t is a scalar constant.
(a) Determine, in terms of t where appropriate:
(i) $\mathbf{a} \times \mathbf{b}$;
(2 marks)
(ii) $(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}$;
(iii) $(\mathbf{a} \times \mathbf{b}) \times \mathbf{c}$.
(b) Find the value of t for which \mathbf{a}, \mathbf{b} and \mathbf{c} are linearly dependent.
(c) Find the value of t for which \mathbf{c} is parallel to $\mathbf{a} \times \mathbf{b}$.

3 The matrix $\mathbf{A}=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 3 \\ 4 & 3 & k\end{array}\right]$, where k is a constant.
Determine, in terms of k where appropriate:
(a) $\operatorname{det} \mathbf{A}$;
(b) \mathbf{A}^{-1}.

4 Two planes have equations

$$
\mathbf{r} \cdot\left[\begin{array}{r}
5 \\
1 \\
-1
\end{array}\right]=12 \quad \text { and } \quad \mathbf{r} \cdot\left[\begin{array}{l}
2 \\
1 \\
4
\end{array}\right]=7
$$

(a) Find, to the nearest 0.1°, the acute angle between the two planes.
(b) (i) The point $P(0, a, b)$ lies in both planes. Find the value of a and the value of b.
(ii) By using a vector product, or otherwise, find a vector which is parallel to both planes.
(iii) Find a vector equation for the line of intersection of the two planes.

5 A plane transformation is represented by the 2×2 matrix \mathbf{M}. The eigenvalues of \mathbf{M} are 1 and 2 , with corresponding eigenvectors $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $\left[\begin{array}{l}1 \\ 1\end{array}\right]$ respectively.
(a) State the equations of the invariant lines of the transformation and explain which of these is also a line of invariant points.
(b) The diagonalised form of \mathbf{M} is $\mathbf{M}=\mathbf{U} \mathbf{D} \mathbf{U}^{-1}$, where \mathbf{D} is a diagonal matrix.
(i) Write down a suitable matrix \mathbf{D} and the corresponding matrix \mathbf{U}.
(ii) Hence determine \mathbf{M}.
(iii) Show that $\mathbf{M}^{n}=\left[\begin{array}{cc}1 & \mathrm{f}(n)-1 \\ 0 & \mathrm{f}(n)\end{array}\right]$ for all positive integers n, where $\mathrm{f}(n)$ is a function of n to be determined.

6 Three planes have equations

$$
\begin{array}{r}
x+y-3 z=b \\
2 x+y+4 z=3 \\
5 x+2 y+a z=4
\end{array}
$$

where a and b are constants.
(a) Find the coordinates of the single point of intersection of these three planes in the case when $a=16$ and $b=6$.
(b) (i) Find the value of a for which the three planes do not meet at a single point.
(ii) For this value of a, determine the value of b for which the three planes share a common line of intersection.

7 A transformation T of three-dimensional space is given by the matrix $\mathbf{W}=\left[\begin{array}{rrr}3 & -1 & 1 \\ 2 & 0 & 2 \\ -1 & 1 & 1\end{array}\right]$.
(a) (i) Evaluate $\operatorname{det} \mathbf{W}$, and describe the geometrical significance of the answer in relation to T .
(ii) Determine the eigenvalues of \mathbf{W}.
(b) The plane H has equation $\mathbf{r} \cdot\left[\begin{array}{r}1 \\ -1 \\ 1\end{array}\right]=0$.
(i) Write down a cartesian equation for H.
(ii) The point P has coordinates (a, b, c). Show that, whatever the values of a, b and c, the image of P under T lies in H.
(4 marks)

8 By considering the determinant

$$
\left|\begin{array}{lll}
x & y & z \\
z & x & y \\
y & z & x
\end{array}\right|
$$

show that $(x+y+z)$ is a factor of $x^{3}+y^{3}+z^{3}-k x y z$ for some value of the constant k to be determined.

