

General Certificate of Education Advanced Level Examination January 2010

Mathematics

MFP3

Unit Further Pure 3

Tuesday 19 January 2010 9.00 am to 10.30 am

For this paper you must have:

- a 12-page answer book
- the blue AQA booklet of formulae and statistical tables.
- You may use a graphics calculator.

Time allowed

• 1 hour 30 minutes

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Write the information required on the front of your answer book. The **Examining Body** for this paper is AQA. The **Paper Reference** is MFP3.
- Answer all questions.
- Show all necessary working; otherwise marks for method may be lost.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 75.

Advice

• Unless stated otherwise, you may quote formulae, without proof, from the booklet.

Answer all questions.

1 The function y(x) satisfies the differential equation

$$\frac{dy}{dx} = f(x, y)$$
$$f(x, y) = x \ln(2x + y)$$
$$y(3) = 2$$

where

and

(a) Use the Euler formula

$$y_{r+1} = y_r + h f(x_r, y_r)$$

with h = 0.1, to obtain an approximation to y(3.1), giving your answer to four decimal places. (3 marks)

(b) Use the improved Euler formula

$$y_{r+1} = y_r + \frac{1}{2}(k_1 + k_2)$$

where $k_1 = h f(x_r, y_r)$ and $k_2 = h f(x_r + h, y_r + k_1)$ and h = 0.1, to obtain an approximation to y(3.1), giving your answer to four decimal places. (5 marks)

- 2 (a) Given that $y = \ln(4+3x)$, find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$. (3 marks)
 - (b) Hence, by using Maclaurin's theorem, find the first three terms in the expansion, in ascending powers of x, of $\ln(4+3x)$. (2 marks)
 - (c) Write down the first three terms in the expansion, in ascending powers of x, of $\ln(4-3x)$. (1 mark)
 - (d) Show that, for small values of x,

$$\ln\left(\frac{4+3x}{4-3x}\right) \approx \frac{3}{2}x \qquad (2 \text{ marks})$$

3 (a) A differential equation is given by

$$x\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + 2\frac{\mathrm{d}y}{\mathrm{d}x} = 3x$$

Show that the substitution

$$u = \frac{\mathrm{d}y}{\mathrm{d}x}$$

transforms this differential equation into

$$\frac{\mathrm{d}u}{\mathrm{d}x} + \frac{2}{x}u = 3 \tag{2 marks}$$

(b) Find the general solution of

$$\frac{\mathrm{d}u}{\mathrm{d}x} + \frac{2}{x}u = 3$$

giving your answer in the form u = f(x).

(c) Hence find the general solution of the differential equation

$$x\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + 2\frac{\mathrm{d}y}{\mathrm{d}x} = 3x$$

giving your answer in the form y = g(x). (2 marks)

- 4 (a) Write down the expansion of $\sin 3x$ in ascending powers of x up to and including the term in x^3 . (1 mark)
 - (b) Find

$$\lim_{x \to 0} \left[\frac{3x \cos 2x - \sin 3x}{5x^3} \right]$$
(4 marks)

(5 marks)

5 It is given that *y* satisfies the differential equation

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + 3\frac{\mathrm{d}y}{\mathrm{d}x} + 2y = 2\mathrm{e}^{-2x}$$

- (a) Find the value of the constant p for which $y = pxe^{-2x}$ is a particular integral of the given differential equation. (4 marks)
- (b) Solve the differential equation, expressing y in terms of x, given that y = 2and $\frac{dy}{dx} = 0$ when x = 0. (8 marks)

6 (a) Explain why
$$\int_{1}^{\infty} \frac{\ln x^2}{x^3} dx$$
 is an improper integral. (1 mark)

(b) (i) Show that the substitution
$$y = \frac{1}{x}$$
 transforms $\int \frac{\ln x^2}{x^3} dx$ into $\int 2y \ln y \, dy$.
(2 marks)

(ii) Evaluate
$$\int_0^1 2y \ln y \, dy$$
, showing the limiting process used. (5 marks)

(iii) Hence write down the value of
$$\int_{1}^{\infty} \frac{\ln x^2}{x^3} dx$$
. (1 mark)

7 Find the general solution of the differential equation

$$\frac{d^2y}{dx^2} + 4y = 8x^2 + 9\sin x$$
 (8 marks)

8 The diagram shows a sketch of a curve C and a line L, which is parallel to the initial line and touches the curve at the points P and Q.

The polar equation of the curve C is

 $r = 4(1 - \sin \theta), \qquad 0 \le \theta < 2\pi$

and the polar equation of the line L is

$$r\sin\theta = 1$$

- (a) Show that the polar coordinates of P are $\left(2, \frac{\pi}{6}\right)$ and find the polar coordinates of Q. (5 marks)
- (b) Find the area of the shaded region R bounded by the line L and the curve C. Give your answer in the form $m\sqrt{3} + n\pi$, where m and n are integers. (11 marks)

END OF QUESTIONS

There are no questions printed on this page

There are no questions printed on this page

There are no questions printed on this page