Version 1.0



General Certificate of Education (A-level) January 2011

**Mathematics** 

MFP3

(Specification 6360)

**Further Pure 3** 



Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aga.org.uk

Copyright © 2011 AQA and its licensors. All rights reserved.

## Copyright

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX.

| М                   | mark is for method                                                 |
|---------------------|--------------------------------------------------------------------|
| m or dM             | mark is dependent on one or more M marks and is for method         |
| А                   | mark is dependent on M or m marks and is for accuracy              |
| В                   | mark is independent of M or m marks and is for method and accuracy |
| Е                   | mark is for explanation                                            |
| $\sqrt{or}$ ft or F | follow through from previous incorrect result                      |
| CAO                 | correct answer only                                                |
| CSO                 | correct solution only                                              |
| AWFW                | anything which falls within                                        |
| AWRT                | anything which rounds to                                           |
| ACF                 | any correct form                                                   |
| AG                  | answer given                                                       |
| SC                  | special case                                                       |
| OE                  | or equivalent                                                      |
| A2,1                | 2 or 1 (or 0) accuracy marks                                       |
| –x EE               | deduct <i>x</i> marks for each error                               |
| NMS                 | no method shown                                                    |
| PI                  | possibly implied                                                   |
| SCA                 | substantially correct approach                                     |
| с                   | candidate                                                          |
| sf                  | significant figure(s)                                              |
| dp                  | decimal place(s)                                                   |

## Key to mark scheme abbreviations

## No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

## Otherwise we require evidence of a correct method for any marks to be awarded.

| QSolutionMarksTotalComments1 $k_1 = 0.1 \times (3 + \sqrt{4})$ (-0.5)M1M1PIaccept 3dp or better $k_2 = 0.1 \times (3.1 + \sqrt{4.5}) = 0.522132$ A1PIaccept 3dp or better $y(3.1) = y(3) + \frac{1}{2}[k_1 + k_2]$ m1Dep on previous two Ms and numerical values for $k$ 's $y(3.1) = y(3) + \frac{1}{2}[k_1 + k_2]$ m1Dep on previous two Ms and numerical values for $k$ 's $y(3.1) = 4.511$ A15Must be 4.511 $p \cos x - q \sin x + 5p \sin x + 5q \cos x = 13 \cos x$ m1Equating coeffs. $p = \frac{1}{2}$ : $q = \frac{5}{2}$ A13OE Need both $p = \frac{1}{2}$ : $q = \frac{5}{2}$ A13OE Need both $(y_{Cr} =) Ae^{-5x}$ M1For solving $y'(x) + 5y=0$ as far as $y=0$ $(y_{Cr} =) Ae^{-5x} + \frac{1}{2} \sin x + \frac{5}{2} \cos x$ B1F3 $c^* S CF + c^* S PI$ with exactly one arbitrary constant OE <b>3(a)</b> $r + r \cos \theta = 2$<br>$r = 2 - x$<br>$x^2 + y^2 = (2 - x)^2$<br>$y^2 = 4 - 4(\frac{3}{4}) = 1 \Rightarrow y = \pm 1;$ PIs $(\frac{3}{4}, \pm 1)$ ]<br>$PI = \frac{1}{2}$ M1 $p^2 = 4 - 4(\frac{3}{4}) = 1 \Rightarrow y = \pm 1;$ PIs $(\frac{3}{4}, \pm 1)$ ]M1Vise of $r \cos \theta = x$<br>$4x=3$<br>$OEy^2 = 4 - 4(\frac{3}{4}) = 1 \Rightarrow y = \pm 1;PIs (\frac{3}{4}, \pm 1)]M1M1Distance between pts (0.75, 1) and (0.75, -1)is 2A14\frac{M1n}{1}2 = 2 \times \frac{5}{4} \times \frac{5}{4} = 2M1 (A1)(M1 elimination of either r or \theta(For A condone slight prem approx.)Distance PQ = 2r \sin \theta= 2 \times \frac{5}{4} \times \frac{5}{4} = 2QEQEMust be from exact values.Must be from exac$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MFP3         | Mark Scheme – General Certificate of Education (A-level) Mathematics – Fultitier Fulle 5 – January 201<br>MFP3 |        |       |                                            |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------------------------------------------------------------------------------------------------------------|--------|-------|--------------------------------------------|--|--|
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              | Solution                                                                                                       | Marks  | Total | Comments                                   |  |  |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1            | $k_1 = 0.1 \times (3 + \sqrt{4})$ (=0.5)                                                                       | M1     |       |                                            |  |  |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                                                                                                                | M1     |       |                                            |  |  |
| $y(3.1) = y(3) + \frac{1}{2}[k_1 + k_2]$ $= 4 + 0.5 \times 1.022132$ $p(3.1) = 4.511$ $A1$ $S$ $y(3.1) = 4.511$ $Dep on previous two Ms and numerical values for k's muscles for k's mu$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |                                                                                                                | A1     |       | PI accept 3dp or better                    |  |  |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                                                                                                                |        |       |                                            |  |  |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              | $y(3.1) = y(3) + \frac{1}{2}[k_1 + k_2]$                                                                       |        |       |                                            |  |  |
| y(3.1) = 4.511A15Must be 4.511Total52(a) $p\cos x - q\sin x + 5p\sin x + 5q\cos x = 13\cos x$ M1Differentiation and subst. into DE $p + 5q = 13$ ; $5p - q = 0$ m1Equating coeffs. $p = \frac{1}{2}$ ; $q = \frac{5}{2}$ A13OE Need both(b)Aux. cqn. $m + 5 = 0$ M1P1. Or solving $y'(x) + 5y = 0$ as far as $y = 0$ $(y_{Cr} = )Ae^{-5x}$ B13 $c^2 x C F + c^2 x PI$ with exactly one arbitrary constant OE(b) $xex cqn. m + 5 = 0$ M1 $A1$ $c^2 x C F + c^2 x PI$ with exactly one arbitrary constant OE( $y_{Cr} = )Ae^{-5x}$ $\frac{1}{2}\sin x + \frac{5}{2}\cos x$ B1F3 $c^2 x C F + c^2 x PI$ with exactly one arbitrary constant OE( $y_{Cr} = )Ae^{-5x} + \frac{1}{2}\sin x + \frac{5}{2}\cos x$ B1 $r \cos \theta = x$ stated or used $r + x = 2$ M1 $r \cos \theta = x$ M2 $r + x = 2^{-x}$ M1 $r \cos \theta = x$ stated or used $r + x = 2$ M1 $r^2 = x^2 + y^2$ used $y^2 = 4 - 4x$ A15Must be in the form $y^2 = f(x)$ but accept ACF for $f(x)$ .(b)Equation of line: $r\cos \theta = \frac{3}{4} \Rightarrow x = \frac{3}{4}$ M1 $A1$ 4 $y^2 = 4 - 4\left(\frac{3}{4}\right) = 1 \Rightarrow y = \pm 1$ ; $[Pts\left(\frac{3}{4}, \pm 1\right)]$ M1 $A1$ 4 $y^2 = 4 - 4\left(\frac{3}{4}\right) = 1 \Rightarrow y = \pm 1$ ; $[Pts\left(\frac{3}{4}, \pm 1\right)]$ M14 $y^2 = 4 - 4\left(\frac{3}{4}\right) = 1 \Rightarrow y = \pm 1$ ; $[Pts\left(\frac{3}{4}, \pm 1\right)]$ M14 $y^2 = 4 - 4\left(\frac{3}{4}\right) = 1 \Rightarrow y = \pm 1$ ; $[Pts\left(\frac{3}{4}, \pm 1\right)]$ M14 $y^2 = 4 - 4\left(\frac{3}{4}\right) = 1 \Rightarrow y = \pm 1$ ; $[Pts\left(\frac{3}{4}, \pm 1\right)]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | 2                                                                                                              | m1     |       |                                            |  |  |
| Image: construct of the second system of the second sys                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                                                                                                                |        |       |                                            |  |  |
| 2(a) $p\cos x - q\sin x + 5p\sin x + 5q\cos x = 13\cos x$<br>$p + 5q = 13;$ MI<br>$p - \frac{1}{2};$ Differentiation and subst. into DE<br>Equating coeffs.(b) $p = \frac{1}{2};$ $q = \frac{5}{2}$<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                                                                                                                | A1     |       | Must be 4.511                              |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2(a)         |                                                                                                                | M1     | 5     | Differentiation and subst into DE          |  |  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2(a)         |                                                                                                                |        |       |                                            |  |  |
| (b) Aux. eqn. $m + 5 = 0$<br>$(y_{CF} =)Ae^{-5x}$<br>$(y_{CS} =)Ae^{-5x} + \frac{1}{2}\sin x + \frac{5}{2}\cos x$<br>BIF 3<br>$r + r\cos\theta = 2$<br>r + x = 2<br>r + x = 2<br>$x^2 + y^2 = (2 - x)^2$<br>$y^2 = 4 - 4x$<br>(b) Equation of line: $r\cos\theta = \frac{3}{4} \Rightarrow x = \frac{3}{4}$<br>$y^2 = 4 - 4\left(\frac{3}{4}\right) = 1 \Rightarrow y = \pm 1;$ [Pts $\left(\frac{3}{4}, \pm 1\right)$ ]<br>Distance between pts (0.75, 1) and (0.75, -1)<br>is 2<br>$\frac{Altn:}{At pts of intersection, r = \frac{5}{4} and \cos\theta = \frac{3}{5}OE\frac{Altn:}{At pts of intersection, r = \frac{5}{4} and \cos\theta = \frac{3}{5}OE\frac{Altn:}{At pts of intersection, r = \frac{5}{4} and \cos\theta = \frac{3}{5}OE\frac{Altn:}{At pts of intersection, r = \frac{5}{4} and \cos\theta = \frac{3}{5}OE\frac{Altn:}{At pts of intersection, r = \frac{5}{4} and \cos\theta = \frac{3}{5}OE\frac{Altn:}{At pts of intersection, r = \frac{5}{4} and \cos\theta = \frac{3}{5}OE\frac{Altn:}{At pts of intersection, r = \frac{5}{4} and \cos\theta = \frac{3}{5}OE\frac{Altn:}{At pts of intersection, r = \frac{5}{4} and \cos\theta = \frac{3}{5}OE\frac{Altn:}{At pts of intersection, r = \frac{5}{4} and \cos\theta = \frac{3}{5}OE\frac{Altn:}{At pts of intersection, r = \frac{5}{4} and \cos\theta = \frac{3}{5}OE\frac{Altn:}{At pts of intersection, r = \frac{5}{4} and \cos\theta = \frac{3}{5}OE\frac{Altn:}{At pts of intersection, r = \frac{5}{4} and \cos\theta = \frac{3}{5}OE\frac{Altn:}{At pts of intersection, r = \frac{5}{4} and \cos\theta = \frac{3}{5}OE\frac{Altn:}{At pts of intersection, r = \frac{5}{4} and \cos\theta = \frac{3}{5}OE\frac{Altn:}{At pts of intersection, r = \frac{5}{4} and \cos\theta = \frac{3}{5}OE\frac{Altn:}{At pts of intersection, r = \frac{5}{4} and \cos\theta = \frac{3}{5}OE\frac{Altn:}{At pts of intersection, r = \frac{5}{4} and \cos\theta = \frac{3}{5}OE\frac{Altn:}{At pts of intersection, r = \frac{5}{4} and \cos\theta = \frac{3}{5}OE\frac{Altn:}{At pts of intersection, r = \frac{5}{4} and \cos\theta = \frac{3}{5}OE\frac{Altn:}{At pts of intersection, r = \frac{5}{4} and \cos\theta = \frac{3}{5}OE\frac{Altn:}{At pts of intersection}\frac{Altn:}{At pts of intersection}A$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |                                                                                                                | 1111   |       | Equating coens.                            |  |  |
| $(y_{CF} = )Ae^{-5x}$ $(y_{CF} = )Ae^{-5x} + \frac{1}{2}\sin x + \frac{5}{2}\cos x$ $B1F$ $3$ $C^{*} CF + c^{*} S PI with exactly one arbitrary constant OE$ $C^{*} CF + c^{*} S PI with exactly one arbitrary constant OE$ $(y_{CF} = )Ae^{-5x} + \frac{1}{2}\sin x + \frac{5}{2}\cos x$ $B1F$ $3$ $C^{*} CF + c^{*} S PI with exactly one arbitrary constant OE$ $C^{*} CF + c^{*} S PI with exactly one arbitrary constant OE$ $(y_{CF} = )Ae^{-5x} + \frac{1}{2}\sin x + \frac{5}{2}\cos x$ $R = 0$ $(y_{CF} = )Ae^{-5x} + \frac{1}{2}\sin x + \frac{5}{2}\cos x$ $R = 0$ $C^{*} CF + c^{*} S PI with exactly one arbitrary constant OE$ $(y_{CF} = )Ae^{-5x} + \frac{1}{2}\sin x + \frac{5}{2}\cos x$ $R = 0$ $(y_{CF} = )Ae^{-5x} + \frac{1}{2}\sin x + \frac{5}{2}\cos x$ $R = 0$ $(y_{CF} = )Ae^{-5x} + \frac{1}{2}\sin x + \frac{5}{2}\cos x$ $R = 0$ $(y_{CF} = )Ae^{-5x} + \frac{1}{2}\sin x + \frac{5}{2}\cos x$ $R = 0$ $(y_{CF} = )Ae^{-5x} + \frac{1}{2}\sin x + \frac{5}{2}\cos x$ $R = 0$ $(y_{CF} = )Ae^{-5x} + \frac{1}{2}\sin x + \frac{5}{2}\cos x$ $R = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              | $p = \frac{1}{2};  q = \frac{3}{2}$                                                                            | A1     | 3     | OE Need both                               |  |  |
| $(y_{cs} =)Ae^{-5x} + \frac{1}{2}\sin x + \frac{5}{2}\cos x$ BIF 3 $(y_{cs} =)Ae^{-5x} + \frac{1}{2}\sin x + \frac{5}{2}\cos x$ BIF 3 $(y_{cs} =)Ae^{-5x} + \frac{1}{2}\sin x + \frac{5}{2}\cos x$ BIF 3 $(y_{cs} =)Ae^{-5x} + \frac{1}{2}\sin x + \frac{5}{2}\cos x$ BIF 3 $(y_{cs} =)Ae^{-5x} + \frac{1}{2}\sin x + \frac{5}{2}\cos x$ BIF 3 $(y_{cs} =)Ae^{-5x} + \frac{1}{2}\sin x + \frac{5}{2}\cos x$ BIF 3 $(y_{cs} =)Ae^{-5x} + \frac{1}{2}\sin x + \frac{5}{2}\cos x$ BIF 3 $(y_{cs} =)Ae^{-5x} + \frac{1}{2}\sin x + \frac{5}{2}\cos x$ BIF 3 $(y_{cs} =)Ae^{-5x} + \frac{1}{2}\sin x + \frac{5}{2}\cos x$ BIF 3 $(y_{cs} =)Ae^{-5x} + \frac{1}{2}\sin x + \frac{5}{2}\cos x$ BIF 3 $(y_{cs} =)Ae^{-5x} + \frac{1}{2}\sin x + \frac{5}{2}\cos x$ BIF 3 $(y_{cs} =)Ae^{-5x} + \frac{1}{2}\sin x + \frac{5}{2}\cos x$ BIF 3 $(y_{cs} =)Ae^{-5x} + \frac{1}{2}\sin x + \frac{5}{2}\cos x$ BIF 3 $(y_{cs} =)Ae^{-5x} + \frac{1}{2}\sin x + \frac{5}{2}\cos x$ BIF 3 $(y_{cs} =)Ae^{-5x} + \frac{1}{2}\sin x + \frac{5}{2}\cos x$ BIF 3 $(y_{cs} =)Ae^{-5x} + \frac{1}{2}\sin x + \frac{5}{2}\cos x$ BIF 3 $(y_{cs} =)Ae^{-5x} + \frac{1}{2}\sin x + \frac{5}{2}\cos x$ BIF 3 $(y_{cs} =)Ae^{-5x} + \frac{1}{2}\sin x + \frac{5}{2}\cos x$ BIF 3 $(y_{cs} =)Ae^{-5x} + \frac{1}{2}\sin x + \frac{5}{2}\cos x$ BIF 3 $(y_{cs} =)Ae^{-5x} + \frac{1}{2}\sin x + \frac{5}{2}\cos x$ BIF 3 $(y_{cs} =)Ae^{-5x} + \frac{1}{2}\sin x + \frac{5}{2}\cos x$ BIF 3 $(y_{cs} =)Ae^{-5x} + \frac{1}{2}\sin x + \frac{5}{2}\cos x$ BIF 3 $(y_{cs} =)Ae^{-5x} + \frac{1}{2}\sin x + \frac{5}{2}\cos x + \frac{1}{2}\sin x + \frac{5}{2}\sin x + \frac{1}{2}\sin x + \frac{5}{2}\cos x + \frac{1}{2}\sin x +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (b)          | Aux. eqn. $m + 5 = 0$                                                                                          | M1     |       | PI. Or solving $y'(x)+5y=0$ as far as $y=$ |  |  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              | $(y_{CF} =) A e^{-5x}$                                                                                         | A1     |       | OE                                         |  |  |
| $\mathbf{Total}$ $\mathbf{Total}$ $6$ $\mathbf{3(a)}$ $r + r \cos \theta = 2$<br>$r + x = 2$<br>$r = 2 - x$<br>$x^2 + y^2 = (2 - x)^2$<br>$y^2 = 4 - 4x$ $\mathbf{M1}$<br>$\mathbf{A1}$ $r \cos \theta = x$ stated or used<br>$\mathbf{A1}$ $\mathbf{(b)}$ Equation of line: $r \cos \theta = \frac{3}{4} \Rightarrow x = \frac{3}{4}$<br>$x^2 + y^2 = 4 - 4\left(\frac{3}{4}\right) = 1 \Rightarrow y = \pm 1;$ $[Pts\left(\frac{3}{4}, \pm 1\right)]$<br>$\mathbf{M1}$<br>$\mathbf{M1}$ $\mathbf{M1}$<br>$\mathbf{A1}$ $\mathbf{M2}$<br>$\mathbf{M1}$<br>$\mathbf{M1}$ Use of $r \cos \theta = x$<br>$4x=3$ OE $\mathbf{(b)}$ Equation of line: $r \cos \theta = \frac{3}{4} \Rightarrow x = \frac{3}{4}$<br>$\mathbf{M1}$<br>$\mathbf{M1}$ $\mathbf{M1}$<br>$\mathbf{M1}$ $\mathbf{M1}$<br>$\mathbf{M1}$ $\mathbf{M2}$<br>$\mathbf{M2}$ $\mathbf{(b)}$ Equation of line: $r \cos \theta = \frac{3}{4} \Rightarrow x = \frac{3}{4}$<br>$\mathbf{M1}$<br>$\mathbf{M1}$ $\mathbf{M1}$<br>$\mathbf{M1}$ $\mathbf{M2}$<br>$\mathbf{M2}$ $\mathbf{M3}$<br>$\mathbf{M2}$ $\mathbf{(b)}$ Equation of line: $r \cos \theta = \frac{3}{4} \Rightarrow x = \frac{3}{4}$<br>$\mathbf{M1}$ $\mathbf{M1}$<br>$\mathbf{M1}$ $\mathbf{M2}$<br>$\mathbf{M2}$ $\mathbf{M3}$<br>$\mathbf{M2}$ $\mathbf{M2}$ $\mathbf{M2}$<br>$\mathbf{M3}$ $\mathbf{M3}$<br>$\mathbf{M2}$ $\mathbf{M1}$<br>$\mathbf{M2}$ $\mathbf{M2}$<br>$\mathbf{M2}$ $\mathbf{M2}$<br>$\mathbf{M3}$ $\mathbf{M3}$<br>$\mathbf{M3}$ $\mathbf{M2}$ $\mathbf{M3}$<br>$\mathbf{M3}$ $\mathbf{M1}$<br>$\mathbf{M3}$ $\mathbf{M1}$<br>$\mathbf{M3}$ $\mathbf{M1}$<br>$\mathbf{M3}$ $\mathbf{M2}$<br>$\mathbf{M3}$ $\mathbf{M3}$<br>$\mathbf{M3}$ $\mathbf{M3}$<br>$\mathbf{M3}$ $\mathbf{M3}$<br>$\mathbf{M3}$ $\mathbf{M3}$<br>$\mathbf{M3}$ $\mathbf{M3}$<br>$\mathbf{M3}$ $\mathbf{M3}$<br>$\mathbf{M3}$ $\mathbf{M3}$<br>$\mathbf{M4}$ $\mathbf{M3}$<br>$\mathbf{M3}$ $\mathbf{M3}$<br>$\mathbf{M4}$ $M3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              | $(y -) 4e^{-5x} + \frac{1}{-}\sin x + \frac{5}{-}\cos x$                                                       | B1E    | 3     |                                            |  |  |
| <b>3(a)</b><br>$r + r \cos \theta = 2$ $r + x = 2$ $r = 2 - x$ $x^{2} + y^{2} = (2 - x)^{2}$ $y^{2} = 4 - 4x$ <b>(b)</b><br>Equation of line: $r \cos \theta = \frac{3}{4} \Rightarrow x = \frac{3}{4}$ $y^{2} = 4 - 4\left(\frac{3}{4}\right) = 1 \Rightarrow y = \pm 1;  [Pts\left(\frac{3}{4}, \pm 1\right)]$ $Distance between pts (0.75, 1) and (0.75, -1)$ is 2 $\frac{Altn:}{2}$ At pts of intersection, $r = \frac{5}{4}$ and $\cos \theta = \frac{3}{5}$ OE $(M1A1)$ $Distance PQ = 2r \sin \theta$ $= 2 \times \frac{5}{4} \times \frac{4}{5} = 2$ $M1$ $M1$ $A1$ $A1$ $Fright arrow and arrow arrow arrow arrow and arrow arr$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |                                                                                                                | DII    |       | arbitrary constant OE                      |  |  |
| (b)<br>$r + x = 2$ $r = 2 - x$ $x^{2} + y^{2} = (2 - x)^{2}$ $y^{2} = 4 - 4x$ (b)<br>Equation of line: $r \cos \theta = \frac{3}{4} \Rightarrow x = \frac{3}{4}$ $y^{2} = 4 - 4\left(\frac{3}{4}\right) = 1 \Rightarrow y = \pm 1;  [Pts\left(\frac{3}{4},\pm 1\right)]$ $Distance between pts (0.75, 1) and (0.75,-1)$ is 2 (M1 at pts of intersection, $r = \frac{5}{4}$ and $\cos \theta = \frac{3}{5}$ OE (M1A1) Distance $PQ = 2r \sin \theta$ $= 2 \times \frac{5}{4} \times \frac{4}{5} = 2$ (M1A1) (M1) (M1) (M1) (M1) (M1) (M2) (M1) (M2) (M3) (M3) (M3) (M3) (M3) (M3) (M3) (M3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2()          |                                                                                                                | N/1    | 6     |                                            |  |  |
| (b)<br>$ \begin{array}{c} r = 2 - x \\ x^{2} + y^{2} = (2 - x)^{2} \\ y^{2} = 4 - 4x \end{array} $ Equation of line: $r \cos \theta = \frac{3}{4} \Rightarrow x = \frac{3}{4}$ $ \begin{array}{c} M1 \\ A1 \end{array} $ Equation of line: $r \cos \theta = \frac{3}{4} \Rightarrow x = \frac{3}{4}$ $ \begin{array}{c} M1 \\ A1 \end{array} $ $ \begin{array}{c} M1 \\ A1 \end{array} $ $ \begin{array}{c} M1 \\ A1 \end{array} $ $ \begin{array}{c} W1 \\ Distance between pts (0.75, 1) and (0.75, -1) \\ is 2 \end{array} $ $ \begin{array}{c} M1 \\ A1 $ $ \begin{array}{c} M1 \\ A1 \end{array} $ $ \begin{array}{c} M1 \\ A1 $ $ \begin{array}{c} M1 \\ A1$ | <b>3</b> (a) |                                                                                                                |        |       | $r\cos\theta - r$ stated or used           |  |  |
| (b)<br>$ \begin{array}{c} x^{2} + y^{2} = (2 - x)^{2} \\ y^{2} = 4 - 4x \\ \end{array} $ Equation of line: $r \cos \theta = \frac{3}{4} \Rightarrow x = \frac{3}{4} \\ y^{2} = 4 - 4\left(\frac{3}{4}\right) = 1 \Rightarrow y = \pm 1;  [Pts\left(\frac{3}{4},\pm 1\right)] \\ Distance between pts (0.75, 1) and (0.75,-1) \\ is 2 \\ \end{array} $ M1 A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |                                                                                                                |        |       | $r \cos \theta = x$ stated of used         |  |  |
| (b) Equation of line: $r \cos \theta = \frac{3}{4} \Rightarrow x = \frac{3}{4}$<br>$y^2 = 4 - 4\left(\frac{3}{4}\right) = 1 \Rightarrow y = \pm 1;  [Pts\left(\frac{3}{4},\pm 1\right)]$<br>Distance between pts (0.75, 1) and (0.75,-1)<br>is 2<br>Altn:<br>At pts of intersection, $r = \frac{5}{4}$ and $\cos \theta = \frac{3}{5}$ OE<br>Distance $PQ = 2r \sin \theta$<br>$= 2 \times \frac{5}{4} \times \frac{4}{5} = 2$<br>(M1A1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              | $x^2 + y^2 = (2 - x)^2$                                                                                        | M1     |       |                                            |  |  |
| (b) Equation of line: $r\cos\theta = \frac{3}{4} \Rightarrow x = \frac{3}{4}$<br>$y^2 = 4 - 4\left(\frac{3}{4}\right) = 1 \Rightarrow y = \pm 1;  [Pts\left(\frac{3}{4},\pm 1\right)]$<br>Distance between pts (0.75, 1) and (0.75,-1)<br>is 2<br><u>Altn:</u><br>At pts of intersection, $r = \frac{5}{4}$ and $\cos\theta = \frac{3}{5}$ OE<br>Distance $PQ = 2r\sin\theta$<br>$= 2 \times \frac{5}{4} \times \frac{4}{5} = 2$<br>(M1A1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              | $y^2 = 4 - 4x$                                                                                                 | A1     | 5     |                                            |  |  |
| Equation of line: $r\cos\theta = \frac{1}{4} \Rightarrow x = \frac{1}{4}$<br>$y^2 = 4 - 4\left(\frac{3}{4}\right) = 1 \Rightarrow y = \pm 1;  [Pts\left(\frac{3}{4},\pm 1\right)]$<br>Distance between pts (0.75, 1) and (0.75,-1)<br>is 2<br>Altn:<br>At pts of intersection, $r = \frac{5}{4}$ and $\cos\theta = \frac{3}{5}$ OE<br>Distance $PQ = 2r\sin\theta$<br>$= 2 \times \frac{5}{4} \times \frac{4}{5} = 2$<br>(M1A1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)<br>(M1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (b)          | 2 2                                                                                                            |        |       | ACF for $f(x)$ .                           |  |  |
| $y^{2} = 4 - 4 \left(\frac{3}{4}\right) = 1 \Rightarrow y = \pm 1;  [Pts \left(\frac{3}{4}, \pm 1\right)] \qquad M1$ Distance between pts (0.75, 1) and (0.75, -1) is 2 $\frac{Altn:}{At \text{ pts of intersection, } r = \frac{5}{4} \text{ and } \cos\theta = \frac{3}{5} \text{ OE}$ (M1A1) Distance $PQ = 2r \sin \theta$ $= 2 \times \frac{5}{4} \times \frac{4}{5} = 2$ (M1A1) (M1) (M1) (M1) (M1) (M1) (M1) (M1) (M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (0)          | Equation of line: $r\cos\theta = \frac{3}{4} \Rightarrow x = \frac{3}{4}$                                      | M1     |       | Use of $r\cos\theta = x$                   |  |  |
| $\begin{array}{c c} (4) & (4) \\ \text{Distance between pts (0.75, 1) and (0.75, -1)} \\ \text{is 2} \\ \hline                                   $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              | 4 4                                                                                                            |        |       |                                            |  |  |
| $\begin{array}{c c} (4) & (4) \\ \text{Distance between pts (0.75, 1) and (0.75, -1)} \\ \text{is 2} \\ \hline                                   $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              | $v^2 - 4 - 4\left(\frac{3}{2}\right) - 1 \rightarrow v - +1$ ; [Pts $\left(\frac{3}{2} + 1\right)$ ]           | 2.01   |       |                                            |  |  |
| is 2<br>Altn:<br>At pts of intersection, $r = \frac{5}{4}$ and $\cos\theta = \frac{3}{5}OE$ (M1A1)<br>Distance $PQ = 2r\sin\theta$<br>$= 2 \times \frac{5}{4} \times \frac{4}{5} = 2$ (M1A1)<br>(M1 elimination of either r or $\theta$ )<br>(For A condone slight prem approx.)<br>Or use of cosine rule or Pythag.<br>Must be from exact values.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              | (4) (4)                                                                                                        | M1     |       |                                            |  |  |
| Altn:<br>At pts of intersection, $r = \frac{5}{4}$ and $\cos\theta = \frac{3}{5}$ OE(M1A1)<br>(M1)<br>(M1)(M1 elimination of either r or $\theta$ )<br>(For A condone slight prem approx.)<br>Or use of cosine rule or Pythag.Distance $PQ = 2r \sin \theta$<br>$= 2 \times \frac{5}{4} \times \frac{4}{5} = 2$ (A1)(M1 elimination of either r or $\theta$ )<br>(For A condone slight prem approx.)<br>Or use of cosine rule or Pythag.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |                                                                                                                | A1     | 4     |                                            |  |  |
| At pts of intersection, $r = \frac{5}{4}$ and $\cos\theta = \frac{3}{5}$ OE(M1A1)(M1 elimination of either r or $\theta$ )<br>(For A condone slight prem approx.)Distance $PQ = 2r \sin \theta$ (M1)(M1) $= 2 \times \frac{5}{4} \times \frac{4}{5} = 2$ (A1)Must be from exact values.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              | 1S 2                                                                                                           |        |       |                                            |  |  |
| At pts of intersection, $r = \frac{5}{4}$ and $\cos\theta = \frac{3}{5}$ OE(M1A1)(M1 elimination of either r or $\theta$ )<br>(For A condone slight prem approx.)Distance $PQ = 2r \sin \theta$ (M1)(M1) $= 2 \times \frac{5}{4} \times \frac{4}{5} = 2$ (A1)Must be from exact values.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              | Altn:                                                                                                          |        |       |                                            |  |  |
| Distance $PQ = 2r \sin \theta$ (M1)<br>$= 2 \times \frac{5}{4} \times \frac{4}{5} = 2$ (M1)<br>(A1) Or use of cosine rule or Pythag.<br>Must be from exact values.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |                                                                                                                | (M1A1) |       |                                            |  |  |
| $= 2 \times \frac{5}{4} \times \frac{4}{5} = 2$ (A1) Must be from exact values.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |                                                                                                                | Ì.     |       |                                            |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |                                                                                                                | (M1)   |       | Or use of cosine rule or Pythag.           |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              | $= 2 \times \frac{5}{4} \times \frac{4}{5} = 2$                                                                | (A1)   |       | Must be from exact values                  |  |  |
| Total 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              | 4 5                                                                                                            | ()     |       | hinds be from exact values.                |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              | Total                                                                                                          |        | 9     |                                            |  |  |

| MFP3(cont) |                                                                                                                       |          |       |                                                        |
|------------|-----------------------------------------------------------------------------------------------------------------------|----------|-------|--------------------------------------------------------|
| Q          | Solution                                                                                                              | Marks    | Total | Comments                                               |
| 4          | IF is $e^{\int -\frac{2}{x} dx}$                                                                                      | M1       |       | Award even if negative sign missing                    |
|            | $= e^{-2\ln(x) (+c)} = e^{\ln(x)^{-2} (+c)}$                                                                          | A1       |       | OE Condone missing <i>c</i>                            |
|            | $=(k)x^{-2}$                                                                                                          | A1F      |       | Ft earlier sign error                                  |
|            | $x^{-2} \frac{\mathrm{d}y}{\mathrm{d}x} - 2x^{-3}y = 2xe^{2x}$ $\frac{\mathrm{d}}{\mathrm{d}x} (x^{-2}y) = 2x e^{2x}$ |          |       |                                                        |
|            | $\frac{\mathrm{d}}{\mathrm{d}x}(x^{-2}y) = 2x \mathrm{e}^{2x}$                                                        | M1       |       | LHS as $d/dx(y \times IF)$ PI                          |
|            | $x^{-2}y = \int 2x \ \mathrm{e}^{2x} \ \mathrm{d}x$                                                                   |          |       |                                                        |
|            | $= \int x  d(e^{2x}) = x e^{2x} - \int e^{2x}  dx$                                                                    | M1<br>A1 |       | Integration by parts in correct dirn                   |
|            | $x^{-2}y = xe^{2x} - \frac{1}{2}e^{2x}$ (+c)<br>When $x = 2, y = e^4$ so                                              | A1       |       | ACF                                                    |
|            | When $x = 2$ , $y = e^4$ so<br>$\frac{1}{4}e^4 = 2e^4 - \frac{1}{2}e^4 + c$                                           | ml       |       | Boundary condition used to find $c$ after integration. |
|            | $c = -\frac{5}{4}e^4$                                                                                                 |          |       |                                                        |
|            | $4  y = x^3 e^{2x} - \frac{1}{2} x^2 e^{2x} - \frac{5}{4} x^2 e^4$                                                    | A1       | 9     | Must be in the form $y = f(x)$                         |
|            | Total                                                                                                                 |          | 9     |                                                        |

| Mark Scheme – General Certificate of Education (A-level) Mathematics – Further Pure 3 – January 2011 |
|------------------------------------------------------------------------------------------------------|
|------------------------------------------------------------------------------------------------------|

| MFP3(cont) | Mark Scheme – General Certificate of Education (A-level) Mathematics – Fultiler Fule 5 – January 201<br>MFP3(cont)                                     |       |       |                                                              |  |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|--------------------------------------------------------------|--|
| Q          | Solution                                                                                                                                               | Marks | Total | Comments                                                     |  |
| 5(a)       | $\frac{12x+8-12x-3}{(4x+1)(3x+2)} = \frac{5}{(4x+1)(3x+2)}$                                                                                            | B1    | 1     | Accept $C = 5$                                               |  |
| (b)        | $\int \frac{10}{(4x+1)(3x+2)} dx = 2 \int \left(\frac{4}{4x+1} - \frac{3}{3x+2}\right) dx$                                                             | M1    |       |                                                              |  |
|            | $= 2 \left[ \ln(4x+1) - \ln(3x+2) \right] (+c)$                                                                                                        | A1    |       | OE                                                           |  |
|            | $I = \lim_{a \to \infty} \int_{1}^{a} \left( \frac{10}{(4x+1)(3x+2)} \right) dx$                                                                       | M1    |       | $\infty$ replaced by <i>a</i> and $\lim_{a \to \infty}$ (OE) |  |
|            | $=2\lim_{a\to\infty} \left[\ln(4a+1) - \ln(3a+2)\right] - (\ln 5 - \ln 5)$                                                                             |       |       |                                                              |  |
|            | $=2\lim_{a\to\infty}\left[\ln\left(\frac{4a+1}{3a+2}\right)\right]=2\lim_{a\to\infty}\left[\ln\left(\frac{4+\frac{1}{a}}{3+\frac{2}{a}}\right)\right]$ | m1,m1 |       | Limiting process shown.<br>Dependent on the previous M1M1    |  |
|            | $= 2\ln\frac{4}{3} = \ln\frac{16}{9}$                                                                                                                  | Al    | 6     | CSO                                                          |  |
|            | Total                                                                                                                                                  |       | 7     |                                                              |  |

| MFP3(cont) |                                                                                                                 |       |       |                                                                                                                                                                                    |
|------------|-----------------------------------------------------------------------------------------------------------------|-------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Q          | Solution                                                                                                        | Marks | Total | Comments                                                                                                                                                                           |
| 6          | Area = $\frac{1}{2} \int \left( 2\sin 2\theta \sqrt{\cos \theta} \right)^2 d\theta$                             | M1    |       | Use of $\frac{1}{2}\int r^2 d\theta$                                                                                                                                               |
|            | $=\frac{1}{2}\int_{0}^{\frac{\pi}{2}} \left(4\cos\theta\sin^{2}2\theta\right)\mathrm{d}\theta$                  | B1    |       | $r^2 = 4\cos\theta\sin^2 2\theta$ or better                                                                                                                                        |
|            |                                                                                                                 | B1    |       | Correct limits                                                                                                                                                                     |
|            | $=\frac{1}{2}\int_{0}^{\frac{\pi}{2}} \left(16\sin^{2}\theta\cos^{3}\theta\right) \mathrm{d}\theta$             | M1    |       | $\sin^2 2\theta = k \sin^2 \theta \cos^2 \theta  (k > 0)$                                                                                                                          |
|            | $= \int_{0}^{\frac{\pi}{2}} \left( 8\sin^2\theta \left( 1 - \sin^2\theta \right) \right)  \mathrm{d}\sin\theta$ | m1    |       | Substitution or another valid method to integrate $\sin^2 \theta \cos^3 \theta$                                                                                                    |
|            | $= \left[\frac{8\sin^3\theta}{3} - \frac{8\sin^5\theta}{5}\right]_0^{\frac{\pi}{2}}$                            | A1F   |       | Correct integration of $p \sin^2 \theta \cos^3 \theta$                                                                                                                             |
|            | $=\left(\frac{8}{3}-\frac{8}{5}\right)-0=\frac{16}{15}$                                                         | A1    | 7     | CSO AG                                                                                                                                                                             |
|            | Alternatives for the last four marks                                                                            |       |       |                                                                                                                                                                                    |
|            | Area = $\int_{0}^{\frac{\pi}{2}} (\cos\theta - \cos4\theta\cos\theta) d\theta$                                  | (M1)  |       | $2\cos\theta\sin^2 2\theta = \lambda\cos\theta + \mu\cos 4\theta\cos\theta$ $(\lambda, \mu \neq 0)$                                                                                |
|            | $\int \left(\cos 4\theta \cos \theta\right)  \mathrm{d}\theta$                                                  | (m1)  |       | Integration by parts twice or use of<br>$\cos 4\theta \cos \theta = \frac{1}{2}(\cos 5\theta + \cos 3\theta)$                                                                      |
|            | $= -\frac{1}{15}(\cos 4\theta \sin \theta - 4\sin 4\theta \cos \theta)$                                         | (A1F) |       | Correct integration of $p\cos 4\theta\cos \theta$                                                                                                                                  |
|            | Area = $(1-0) + \frac{1}{15}[(1-0) - (0)] = \frac{16}{15}$                                                      | (A1)  |       | $\begin{bmatrix} \text{eg } p \left[ \frac{1}{10} \sin 5\theta + \frac{1}{6} \sin 3\theta \right] \end{bmatrix}$<br>CSO AG<br>$\{1 - \frac{1}{10} + \frac{1}{6} = \frac{16}{15}\}$ |
|            | Total                                                                                                           |       | 7     |                                                                                                                                                                                    |

| MFP3(cont) |                                                                                                                                                                                            |          |       |                                                                                         |  |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------|-----------------------------------------------------------------------------------------|--|
| Q          | Solution                                                                                                                                                                                   | Marks    | Total | Comments                                                                                |  |
| 7(a)(i)    | $\cos x + \sin x = 1 + x - \frac{1}{2}x^2 - \frac{1}{6}x^3$                                                                                                                                | B1       | 1     | Accept coeffs unsimplified, even 3! for 6.                                              |  |
| (ii)       | $\ln(1+3x) = 3x - \frac{1}{2}(3x)^2 + \frac{1}{3}(3x)^3 = 3x - \frac{9}{2}x^2 + 9x^3$                                                                                                      | B1       | 1     | Accept coeffs unsimplified                                                              |  |
| (b)(i)     | $y = e^{\tan x}$ , $\frac{dy}{dx} = \sec^2 x e^{\tan x}$                                                                                                                                   | M1<br>A1 |       | Chain rule<br>ACF eg $y \sec^2 x$                                                       |  |
|            | $\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 2 \sec^2 x \tan x  \mathrm{e}^{\tan x} + \sec^4 x  \mathrm{e}^{\tan x}$                                                                            | ml<br>Al |       | Product rule OE<br>ACF                                                                  |  |
|            | $= \sec^2 x  e^{\tan x} (2 \tan x + \sec^2 x)$ $= \frac{dy}{dx} (2 \tan x + 1 + \tan^2 x)$                                                                                                 |          |       |                                                                                         |  |
|            | $\frac{d^2 y}{dx^2} = (1 + \tan x)^2 \frac{dy}{dx}$                                                                                                                                        | A1       | 5     | AG Completion; CSO any valid method.                                                    |  |
| (ii)       | $\frac{dx^3}{dx^3} = 2(1 + \tan x) \sec x \frac{dx}{dx} + (1 + \tan x) \frac{dx^2}{dx^2}$                                                                                                  | M1       |       |                                                                                         |  |
|            | When $x = 0$ , $\frac{d^3 y}{dx^3} = 2(1)(1)(1)+(1)(1) = 3$                                                                                                                                | A1       | 2     | CSO                                                                                     |  |
| (iii)      | y(0) = 1; y'(0) = 1; y''(0) = 1; y'''(0) = 3;<br>$y(x) \approx y(0) + x y'(0) + \frac{1}{2}x^2 y''(0) + \frac{1}{3!}x^3 y'''(0)$                                                           | M1       |       |                                                                                         |  |
|            | $e^{\tan x} \approx 1 + x + \frac{1}{2}x^2 + \frac{1}{2}x^3$                                                                                                                               | A1       | 2     | CSO AG                                                                                  |  |
| (c)        | $\lim_{x \to 0} \left[ \frac{e^{\tan x} - (\cos x + \sin x)}{x \ln(1 + 3x)} \right]$                                                                                                       |          |       |                                                                                         |  |
|            | $= \lim_{x \to 0} \frac{1 + x + \frac{x^2}{2} + \frac{x^3}{2} - 1 - x + \frac{x^2}{2} + \frac{x^3}{6}}{x \left(3x - \frac{9}{2}x^2 + \dots\right)}$                                        | M1       |       | Using series expns.                                                                     |  |
|            | $= \lim_{x \to 0} \left[ \frac{x^2 + \frac{2}{3}x^3 + \dots}{3x^2 - \frac{9}{2}x^3 \dots} \right] = \lim_{x \to 0} \left[ \frac{1 + \frac{2}{3}x + \dots}{3 - \frac{9}{2}x \dots} \right]$ | ml       |       | Dividing numerator and denominator by $x^2$ to get constant terms. OE following a slip. |  |
|            | $=\frac{1}{3}$                                                                                                                                                                             | A1       | 3     |                                                                                         |  |
|            | Total                                                                                                                                                                                      |          | 14    |                                                                                         |  |

| MFP3(cont)   |                                                                                                                                                                                                                                                                          |       |       |                                                                                                                    |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|--------------------------------------------------------------------------------------------------------------------|
| Q            | Solution                                                                                                                                                                                                                                                                 | Marks | Total | Comments                                                                                                           |
| <b>8</b> (a) | dx dy _ dy                                                                                                                                                                                                                                                               | M1    |       | Chain rule                                                                                                         |
|              | $\frac{\mathrm{d}x}{\mathrm{d}t}\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}t}$                                                                                                                                                                       |       |       |                                                                                                                    |
|              | $e^{t} \frac{dy}{dx} = \frac{dy}{dt} \Rightarrow x \frac{dy}{dx} = \frac{dy}{dt}$                                                                                                                                                                                        | A 1   | 2     |                                                                                                                    |
|              | $e \frac{dx}{dx} - \frac{dt}{dt} \rightarrow \frac{x}{dx} - \frac{dt}{dt}$                                                                                                                                                                                               | A1    | Z     | CSO AG                                                                                                             |
| (b)          | $\frac{\mathrm{d}}{\mathrm{d}t}\left(x\frac{\mathrm{d}y}{\mathrm{d}x}\right) = \frac{\mathrm{d}^2 y}{\mathrm{d}t^2};  \frac{\mathrm{d}x}{\mathrm{d}t}\frac{\mathrm{d}}{\mathrm{d}x}\left(x\frac{\mathrm{d}y}{\mathrm{d}x}\right) = \frac{\mathrm{d}^2 y}{\mathrm{d}t^2}$ | M1    |       | OE $\frac{d}{dx}\left(x\frac{dy}{dx}\right) = \frac{dt}{dx}\frac{d^2y}{dt^2}$                                      |
|              | $\frac{\mathrm{d}x}{\mathrm{d}t}\left(\frac{\mathrm{d}y}{\mathrm{d}x} + x\frac{\mathrm{d}^2 y}{\mathrm{d}x^2}\right) = \frac{\mathrm{d}^2 y}{\mathrm{d}t^2}$                                                                                                             | m1    |       | Product rule (dep on previous M)                                                                                   |
|              |                                                                                                                                                                                                                                                                          |       |       |                                                                                                                    |
|              | $x^2 \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + x \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}^2 y}{\mathrm{d}t^2}$                                                                                                                                                    | A1    |       | OE                                                                                                                 |
|              | $x^{2}\frac{d^{2}y}{dx^{2}} - 3x\frac{dy}{dx} + 4y = 2\ln x \text{ becomes}$                                                                                                                                                                                             |       |       |                                                                                                                    |
|              | $\frac{\mathrm{d}^2 y}{\mathrm{d}t^2} - x\frac{\mathrm{d}y}{\mathrm{d}x} - 3x\frac{\mathrm{d}y}{\mathrm{d}x} + 4y = 2\ln x$                                                                                                                                              |       |       |                                                                                                                    |
|              | $\Rightarrow \frac{d^2 y}{dt^2} - 4\frac{dy}{dt} + 4y = 2\ln e^t \text{ (using (a))}$                                                                                                                                                                                    | ml    |       |                                                                                                                    |
|              | $\Rightarrow \frac{d^2 y}{dt^2} - 4\frac{dy}{dt} + 4y = 2t$                                                                                                                                                                                                              | Al    | 5     | CSO AG                                                                                                             |
| (c)          | $Auxl eqn  m^2 - 4m + 4 = 0$                                                                                                                                                                                                                                             | M1    |       | PI                                                                                                                 |
| ()           | $(m-2)^2 = 0, m = 2$                                                                                                                                                                                                                                                     | Al    |       | PI                                                                                                                 |
|              | CF: $(y_c =) (At + B)e^{2t}$                                                                                                                                                                                                                                             | M1    |       | Ft wrong value of <i>m</i> provided equal roots and 2 arb. constants in CF. Condone <i>x</i> for                   |
|              | PI Try $(y_p =)$ $at+b$                                                                                                                                                                                                                                                  | M1    |       | <i>t</i> here<br>If extras, coeffs. must be shown to be 0.                                                         |
|              | $-4a + 4at + 4b = 2t \Longrightarrow a = b = \frac{1}{2}$                                                                                                                                                                                                                | A1    |       | Correct PI. Condone <i>x</i> for <i>t</i> here                                                                     |
|              | GS $\{y\} = (At+B)e^{2t}+0.5(t+1)$                                                                                                                                                                                                                                       | B1F   | 6     | Ft on c's CF + PI, provided PI is non-zero<br>and CF has two arbitrary constants and<br>RHS is fn of <i>t</i> only |
| (d)          | $\Rightarrow y = (A\ln x + B)x^2 + 0.5(\ln x + 1)$                                                                                                                                                                                                                       | M1    |       |                                                                                                                    |
|              | $y = 1.5$ when $x = 1 \implies B = 1$                                                                                                                                                                                                                                    | A1F   |       | Ft one earlier slip                                                                                                |
|              | $y'(x) = (A \ln x + B) 2x + Ax + 0.5 x^{-1}$                                                                                                                                                                                                                             | m1    |       | Product rule                                                                                                       |
|              | $y'(1) = 0.5 \Longrightarrow A = -2$                                                                                                                                                                                                                                     | A1F   |       | Ft one earlier slip                                                                                                |
|              | $y = (1 - 2\ln x)x^2 + \frac{1}{2}(\ln x + 1)$                                                                                                                                                                                                                           | A1    | 5     | ACF                                                                                                                |
|              | Total                                                                                                                                                                                                                                                                    |       | 18    |                                                                                                                    |
|              | TOTAL                                                                                                                                                                                                                                                                    |       | 75    |                                                                                                                    |