

General Certificate of Education (A-level) January 2013

Environmental Studies

ENVS2

(Specification 2440)

Unit 2: The Physical Environment

Final

Mark Scheme

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aga.org.uk

Copyright © 2013 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the school/college.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334).

Registered address: AQA, Devas Street, Manchester M15 6EX.

Environmental Studies

January 2013 ENVS2

Instructions: ; = 1 mark / = alternative response A = accept R = reject

	An	swers		Mark
1				
	Treatment Process	Feature of Process		
	Activated carbon/ activated charcoal (filter)	Removal of organic chemicals as they adsorb onto the particle surfaces	;	
	(Primary) sedimentation/settling	Removal of suspended solids when water is static	;	
	Ozonation	Killing/removal of pathogens/ microorganisms/ bacteria/sterilisation	;	
	Fluoridation [A fluoride/fluorine]	Reduction of tooth decay in people that drink the water	;	
	Flocculation	Aggregation of clay and fine particles by attraction of static electrical charges		
	Filtration	Removal of suspended solids as water flows through material with small pore spaces		
	Desalination/(reverse) osmosis	Production of potable water by forcing water through a partially permeable membrane under high pressure	;	5
Total				5

	Answers	Mark
2(a)(i)	Groundwater changed process; resultant change in amount in groundwater; eg less interception more in groundwater	2
	more infiltration more in groundwater	
	less transpiration more in groundwater	
	less plant/root uptake more in groundwater	
	more runoff less in groundwater	
2(a)(ii)	The atmosphere changed process; resultant change in amount in atmosphere; eg reduced transpiration less in atmosphere	2
	reduced interception less in atmosphere	
	increased infiltration less in atmosphere	
	less evaporation less in atmosphere	
2(b)	Abstractive: removal from source for <u>named</u> example; eg drinking, irrigation, chemical industry, cooling water, swimming pools	
	Non-abstractive : non-removal from source for <u>named</u> example; eg shipping, HEP, boating, sailing, fishing	2
	[R unqualified agriculture, aquaculture, energy production]	

question 2 continued ...

	Answers	Mark
2(c)	Water qualities (linked to a use);;; use(s) of water (correctly linked to quality);;;	MAX 4
	eg any quality, but no large solids power station cooling water	
	soft/low calcium content textile washing	
	no bad taste/smell/poor appearance food/drinking/potable	
	no dissolved materials power station steam water boiler	
	low salinity irrigation [R unqualified agriculture]	
	grey water toilet flushing	
	[R totally pure, drinking water, organic matter as water quality issue]	
	[A vague quality description eg high and low for 1 mark]	
Total		10

	Answers	Mark
3(a)	Hot water/steam; dissolved minerals; different solubility (of different metal minerals); movement (of solution along fissure/vent/fault); cooling (of solution); deposition/crystallisation/coming out of solution/precipitation; order (of deposition)/separation;	MAX 4
3(b)(i)	Ore purity; chemical form; ore body area; ore body shape; total mass/quantity; effect of feature on viability; [R unqualified economics]	MAX 3
3(b)(ii)	Overburden hardness (for removal); overburden stability (for landslip risk); depth/overburden thickness; drainage; faulting; shape of structure/anticline/syncline/dome/dip/named example; designated/protected geological feature; effect of feature on viability; [Pungualified economics]	MAX 3
	[R unqualified economics]	
Total		10

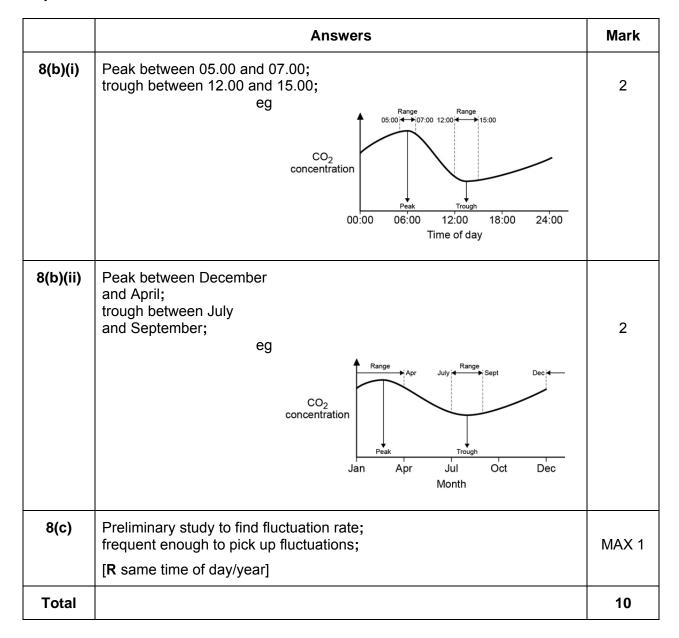
	Answers	Mark
4(a)(i)	(Lowest price so) greater purity (needed to be profitable/economic);	1
4(a)(ii)	Previously uneconomic resource/lower grade ore becomes economic;	1
4(b)	Advantages;; eg large area surveyed rapidly surveys of inaccessible areas cost effective/less labour intensive lower habitat impact	
	Disadvantages;; eg high initial cost less detailed information less sub-surface information clouds obscure surface no physical samples (for analysis)	4
4(c)	Named method; detail of how it works; eg leachate/solution electrolysis bacteria/Thiobacillus acid/leaching	2
	(large scale) mechanisation reduce unit extraction costs plant absorption/phytomining/phytoremediation/brassicas harvest/incineration streaming waste washed away	
	floatation/oil-water separation density	

question 4 continued ...

	Answers	Mark
4(d)	Named material and use; named alternative material for that use;	2
	eg copper (telecoms) cables plastic	
	copper pipes plastic	
	copper (electricity) cables aluminium	
	steel/aluminium car panels plastic/carbon fibre/composite material	
Total		10

	Answers	
5(a)(i)	B;	1
5(a)(ii)	B;	1
5(b)	Systematic/random sampling; [R transect] named method of systematic/random sampling; multiple samples; reduce effect of variability between samples taken at same site; allows use of statistics test; use of auger; same depth; sealed; cool storage; similar size/similar mass/large enough size of samples; detail of timing of sampling (simultaneous or repeated); [A same day] [R same time of day] to remove effect of weather/seasons;	MAX 5
5(c)	Dry/crush/grind/separate particles; sieves with different mesh sizes; reference to correct positions of sand/silt/clay/particle sizes described; weigh; percentage calculation; OR add water (to soil) and shake; allow to settle; reference to correct positions of sand/silt/clay/particle sizes described; measure layers; percentage calculation;	MAX 3
Total		10

	Answers	Mark
6(a)	Increased UV/shortwave radiation; sunburn/DNA damage/cancer/melanoma/retina damage/cataracts/ leaf damage/fish egg/plankton damage;	2
6(b)	Absorption of UV by CFC/CFC broken down by UV;	
	release of chlorine (CI) from CFC/ $CCl_2F_2 \rightarrow CCIF_2$;+ CI;	
	reaction of chlorine (Cl) with monatomic oxygen (O)/Cl' + O' → ClO;	
	reaction of chlorine monoxide (CIO) with monatomic oxygen (O)/ CIO' + O' \rightarrow CIO ₂ ;	
	release of chlorine (CI) from chlorine dioxide (CIO ₂)/ CIO ₂ \rightarrow Cl' + O ₂ ;	
	OR	
	Absorption of UV by CFC/CFC broken down by UV;	
	release of chlorine (CI) from CFC/ $CCl_2F_2 \rightarrow CCIF_2$: + CI;	
	reaction of chlorine (Cl) with ozone (O ₃)/ Cl' + O ₃ \rightarrow ClO' + O ₂ ;	MAX 3
	[R ozone dynamic equilibrium equation]	
6(c)	Chemical stability/persistence of CFCs; continued use of CFCs manufactured before Montreal Protocol;	MAX 1
	[R long time to reform ozone]	


question 6 continued ...

	Answers	Mark
6(d)(i)	Named CFC waste/old fridges/aerosols; incineration;	2
6(d)(ii)	Named use; replacement material;	2
	eg aerosols/propellant hydrocarbons/propane/butane/stick (deodorant) [A HCFCs]	
	solvents alcohols	
	refrigerants HCFCs HFCs	
	expanded plastics propane/pentane	
Total		10

	Answers	Mark
7(a)(i)	(Excess) held back/in reservoir (at times of high flow); reduced flow downstream/reference to flow rates above and below;	2
7(a)(ii)	Previous surplus stored; released to maintain flow; reference to flow rates above and below;	MAX 2
7(b)(i)	Reduced temperature in summer/sunny weather; increased winter temperature/cloudy weather; reduced seasonal range; high thermal capacity/heat storage/slow change/more constant flow; deep water not heated by sun;	MAX 2
7(b)(ii)	Aeration on outflow; increased DO; OR organic matter decay in reservoir; lowered DO; OR lower temperature; higher DO; OR	
	higher temperature; lower DO; OR less turbulent (in reservoir); lower DO; [R change with no explanation]	MAX 2
7(c)	(Land use with) more permeable surfaces/less impermeable; named more permeable/less impermeable surface; reduced runoff/overland flow/increased infiltration; [R reduced flooding]	MAX 2
Total		10

			Answers			Mark
8(a)	Gas	Mean proportion of gas in dried air/%	One natural process that releases the gas	One human activity that causes release of the gas		
	Nitrogen	78	Denitrification (of nitrates)	Use as a low temperature refrigerant	;;	
	Oxygen	21	Photosynthesis	Hospital breathing gases		
	Carbon Dioxide	0.038	Aerobic respiration	Combustion of fossil fuels	;	
	Methane	0.00017	Anaerobic respiration/ anaerobic decomposition/ anaerobic decay/ anaerobic breakdown	Coal mine ventilation	;	
	Water (vapour)	0 (removed when air is dried)	Evapotranspiration	Power station cooling towers	;	5

question 8 continued ...

		Answers	Mark	
9(a)	ch	nty over: accurate/incomplete (climate) data; nanges in/unpredictability of emission rates/control; complete understanding of natural climate;		
	na int dit ne	etural fluctuations/changes; terconnected systems; fferent rates of change/cause-effect lag; egative feedback mechanisms; ositive feedback mechanisms;	MAX 3	
	[A feedba	ack mechanisms for 1 mark]	W. U.C.	
9(b)	oxides of water (va		MAX 2	
	[A SF ₆ /su	Ifur hexafluoride]		
9(c)	wildlife;;;	n named abiotic factor/habitat feature and specific impact on ;;;;; ed taxa illustrating specific impact;;;	MAX 8	
	eg of impact: competition for named resource habitat loss displacement of wildlife rate of colonisation lack of biological corridor changes in migration patterns interspecies relationships			
	Quality or	f Written Communication		
	Mark	Descriptor		
	2	All material is logically presented in clear, scientific English and continuous prose. Spelling, punctuation and grammar are almost always correct. Technical terminology has been used effectively and accurately throughout. At least half a page of material is presented.		
	1	Account is logical and generally presented in clear, scientific English and continuous prose. Minor errors occur in spelling, punctuation and grammar. Technical terminology has been used effectively, and is usually accurate. At least half a page of material is presented.		
	0	The account is generally poorly constructed and often fails to use an appropriate scientific style to express ideas. Spelling, punctuation and grammar contain many errors.	2	
Total			15	

UMS conversion calculator www.aqa.org.uk/umsconversion