

Electronics

Data Sheet

[······································				
Resistors	Preferred values for resistors (E24) series: 1.0, 1.1, 1.2, 1.3, 1.5, 1.6, 1.8, 2.0, 2.2, 2.4, 2.7, 3.0, 3.3, 3.6, 3.9, 4.3, 4.7, 5.1, 5.6, 6.2, 6.8, 7.5, 8.2, 9.1 ohms etc.				
Resistor Printed Code	This code consists of letters and numbers:				
(BS 1852)					
	K means \times 1000 (i.e. 10 ³) M means \times 1 000 000 (i.e. 10 ⁶)				
	M means \times 1 000 000 (i.e. 10 ⁶) Position of the letter gives the decimal point				
	Tolerances are given by the letter at the end of the code,				
	$F = \pm 1\%, G = \pm 2\%, J = \pm 5\%, K = \pm 10\%, M = \pm 20\%.$				
Resistor Colour Code	Number Colour				
	0 Black				
	1 Brown	Tolerance			
	2 Red	Value			
	3 Orange				
	4 Yellow 5 Green				
	6 Blue	*			
	7 Violet	Multiplier			
	8 Grey	-			
	9 White				
	Tolerance, gold = $\pm 5\%$, silver = $\pm 10\%$, no band = $\pm 20\%$				
Silicon diode	$V_{\rm F} = 0.7 {\rm V}$				
Silicon transistor	$V_{\rm be} \approx 0.7 \text{ V}$ in the on state, $V_{\rm ce} \approx 0.2 \text{ V}$ when saturated				
Resistance	$R_{\mathrm{T}} = R_1 + R_2 + R_3 + \dots$	series			
	$\frac{1}{R_T} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots$	parallel			
Capacitance	$\frac{1}{C_T} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} + \dots$	series			
	$C_{\rm T} = C_1 + C_2 + C_3 + \dots$	parallel			
Time constant	$T = CR, T_{\frac{1}{2}} = 0.69 CR$				
ac theory	$I_{\rm rms} = \frac{I_0}{\sqrt{2}}$	5			
	$V_{\rm rms} = -\frac{V_0}{\sqrt{2}}$				
	$X_{\rm C} = -\frac{1}{2\pi fC}$	reactance			
	$\begin{array}{rcl} X_{\rm L} & & 2\pi f C \\ X_{\rm L} = & 2\pi f L \end{array}$	reactance			
3	$f = \frac{1}{T}$	frequency, period			
	$f_0 = \frac{1}{2\pi\sqrt{LC}}$	resonant frequency			

This insert page should not be sent to the examiner

	· · · · · · · · · · · · · · · · · · ·	
Operational amplifier	$G_{\rm V} = \frac{V_{\rm out}}{V_{\rm in}}$	voltage gain
	$G_{\rm V} = -\frac{R_{\rm f}}{R_{\rm l}} \qquad \qquad$	inverting
	$G_{\rm V} = 1 + \frac{R_{\rm f}}{R_{\rm l}}$	non-inverting
	$V_{\text{out}} = -R_{\text{f}} \left(\frac{V_1}{R_1} + \frac{V_2}{R_2} + \frac{V_3}{R_3} \right)$	summing
	$V_{\rm out} = (V_+ - V) \frac{R_{\rm f}}{R_{\rm l}}$	difference
555 Astable and Monstable	T = 1.1RC	monostable
	$t_{\rm H} = 0.7 \ (R_{\rm A} + R_{\rm B})C$ $t_{\rm L} = 0.7 \ R_{\rm B}C$	astable
	$f = \frac{1.44}{(R_{\rm A} + 2R_{\rm B})C}$	astable frequency
Electromagnetic waves	$c = 3 \times 10^8 \mathrm{ms^{-1}}$	speed in vacuo
-		-

Assembler language microcontroller instructions

Mnemonic	Operands	Description	Operation	Flags	Clock cycles
NOP	none	No operation	none	none	1
CALL	К	Call subrountine	stack <=PC PC <=K	none	2
RET	none	Return from subrountine	PC <= stack	none	2
INC	R	Increments the contents of R	$(R) \le (R) + 1$	Z	1
DEC	R	Decrements the contents of R	$(R) \le (R) - 1$	Ζ	1
ADDW	K	Add K to W	$W \le W + K$	Z, C	1
ANDW	K	AND K with W	$W \le W \bullet K$	- Z, C	1
SUBW	K	Subtract K from W	$W \leq W - K$	Z, C	1
ORW	K	OR K and W	$W \le W + K$	Z, C	1
XORW	••• K	XOR K and W	$W \le W \oplus K$	Z, C	1
JMP	K	$I_{\text{ump}} t_0 V (COTO)$	PC <= K		2
JPZ	K	Jump to K (GOTO) Jump to K on zero	$\frac{PC \le K}{PC \le K \text{ if } Z=1}$	none Z=1	$\frac{2}{2}$
JPC	K	Jump to K on carry	$\frac{PC \le K \text{ if } Z=1}{PC \le K \text{ if } C=1}$	C=1	$\frac{2}{2}$
MOVWR	R	Move W to the contents of R	(R) <= W	Z	1
MOVW	K	Move K to W	W <= K	Z	1
MOVRW	R	Move the contents of R to W	W <= (R)	Z	1