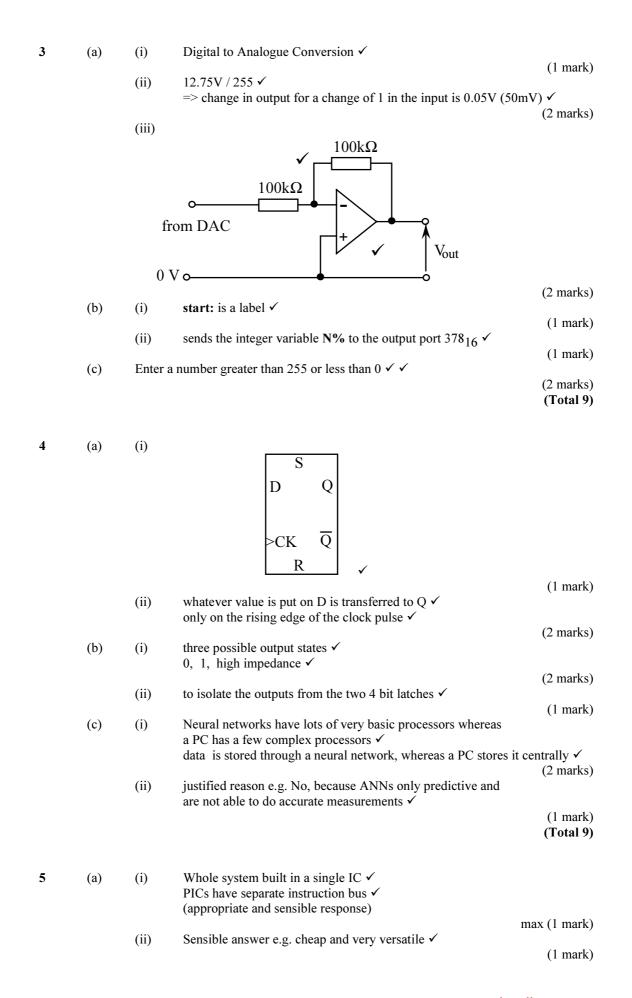


Mark scheme June 2003

GCE


Electronics

Unit ELE4

Copyright © 2003 AQA and its licensors. All rights reserved.

ELE4 – Electronic Control Systems

1	(a)	(i)	data in ROM cannot be changed, data in RAM can be ✓ ROM retains data after power is removed, Ram looses data ✓ etc. max (1 mark)
		(ii)	basic input and output instructions ✓ basic operating system commands ✓ any sensible response
	(b)	(i)	A bus is a collection of wires along which data is sent and received and to which each section of the microcomputer system is connected (1 marks)
		(ii)	(1 mark) Buses are used to reduce the number of connection routes needed ✓ (1 mark)
		(iii)	To enable data to pass to and from the microprocessor (or RAM etc) ✓
	(c)	(i)	Memory mapped ports are decoded as memory addresses and accessed as memory elements ✓
		(ii)	I/O mapping has its own separate control line (or commands) to indicate an address is an I/O port. ✓ I/O mapping does not take up memory allocation (addresses) ✓ (2 marks) (Total 9)
			(=====)
2	(a)	(i)	a, b, c, d, $g \checkmark$ (1 mark)
		(ii)	$D_0, D_1, D_2, D_3 \text{ and } D_6 \checkmark$ i.e. 01001111 (or 79_{10}) \checkmark giving $4F \checkmark$
			(3 marks)
	(b)	(i)	60mA ✓
		(ii)	5 LEDs => 5 x 1.9 = 9.5V \checkmark voltage across R approx. 15 - 9.5 = 5.5V \checkmark => R = 5.5 / 0.06 = 91.7Ω \checkmark
		(iii)	Power = $\mathbf{V} \times \mathbf{I} = 5.5 \times 0.06 \checkmark$
		(111)	$=> Power = 0.33W (accept 0.5 \text{ or } 1\text{W}) \checkmark$
			(2 marks) (Total 9)

	(b)	Closed loop when system monitors the output and uses state of output to control the input (feedback) \checkmark eg. Filling with water requires the amount of water to be monitored and stopped at the required amount - could not do by time because of variation in water pressure \checkmark Heating could not be done by time because of variation in input water temp \checkmark				
	(c)	(i)	Negative feedback is where information from the output is used to adjust the input so that the output remains steady ✓	(2 marks)		
		(ii)	If the speed is too fast the input drive to the motor will be reduced and vice versa if the speed is too slow \checkmark	(1 mark)		
	(d)	(i)	thermistor ✓	(1 mark)		
		(ii)	thermistor is part of a voltage divider circuit which produces a voltage dependent upon the temperature of the thermistor. The op-amp compares this voltage with that from the PIC/AVR a produces a low output when the voltage from the voltage divider exceeds that from the PIC/AVR			
				(2 marks) (Total 9)		
6	(a)	To clean up the pulses,(restoring the logic levels and sharp rise and fall times) ✓ (1 mark)				
	(b)	(i)	When the output is at 0V, the voltage divider connected to point A consists of a $47k\Omega$ resistor at the top and two $47k\Omega$ resistors in parallel at the bottom \checkmark Combined resistance at bottom is $23.5k\Omega$ \checkmark Voltage divided into ratio of $2:1 \Longrightarrow$ voltage at point $A = 4V$	(3 marks)		
		(ii)	When output is 12V, there are two $47k\Omega$ resistors at the top of the voltage divider and one $47k\Omega$ resistor at the bottom \checkmark Combined resistance at top is $23.5k\Omega$ \checkmark Voltage divided into ratio of 1:2 => voltage at point A = 8V \checkmark			
		(iii)	Op-amp has a very large open loop voltage gain so acts as a comparable when the input rises above 8V, the inverting input to the op-amp is than the non-inverting input, so the output goes to $0V \checkmark$ Similarly when the input voltage goes below 4V when the output is $12V \checkmark$	amp is greater		
			max	(2 marks) (Total 9)		
7	(a)	MOSFET or transistor with coils in drain/collector circuit. ✓ Input to gate or base (with series resistor) ✓ Protection diode for MOSFET/transistor correctly placed ✓ (3 marks)				
	(b)	(i)	A 4 pole stepper motor rotates 7.5° as each successive coil is energised, so with four coils energised in sequence it rotates 30° \checkmark	,		
		(ii)	Reverse the sequence \checkmark so that D_3 is energised first, then D_2 , then D_1 then finally $D_0 \checkmark$	(1 mark)		
		(iii)	Alter the value of the pause ✓	(2 marks)		
		(111)	There are value of the pause.	(1 mark)		

(c) (i) OUT(&H378), is command to write what follows to the parallel port and 4 corresponds to making the bit D_2 logic 1 \checkmark (1 mark) (ii) OUT(&H378), 1 **GOSUB** waitabit OUT(&H378), 2 **GOSUB** waitabit OUT(&H378), 4 **GOSUB** waitabit OUT(&H378), 8 **//// STOP** (4 marks) (d) (i) Polled is when the computer monitors a port by regularly reading its value ✓ (1 mark) (ii) Interrupt; the computer performs other operations until an external device generates a signal, upon which the computer will stop what it is doing and service the interrupting device. It does not therefore need to continuously monitor the device unlike with polling. ✓ (1 mark) (iii) Make the motor rotate one step at a time ✓ Read in the value of port (&H379) and examine bit 5 ✓ Repeat this until bit 5 is high, tube A is then aligned with the pipe \checkmark (3 marks) It would be very difficult to make a conventional motor accurately rotate 30° \checkmark (e) (1 mark) (Total 18) (Paper Total 72 marks)