

General Certificate of Education
June 2008
Advanced Subsidiary Examination

ELECTRONICS

ELE1
Unit 1 Foundation Electronics

Friday 16 May $2008 \quad 9.00$ am to 10.30 am

For this paper you must have:

- a pencil and a ruler
- a calculator.

Time allowed: 1 hour 30 minutes

Instructions

- Use black ink or black ball-point pen. Use pencil only for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Answers written in margins or on blank pages will not be marked.
- Do all rough work in this book. Cross through any work you do not want to be marked.
- A Data Sheet is provided on pages 3 and 4. Detach this perforated sheet at the start of the examination.

Information

- The maximum mark for this paper is 72 .
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.
Trme allowed. 1 hour 30 minutes

For Examiner's Use			
Question	Mark	Question	Mark
1		5	
2		6	
3			
4			
Total (Column 1) \longrightarrow			
Total (Column 2) \longrightarrow			
TOTAL			
Examiner's Initials			

Data Sheet

- A perforated Data Sheet is provided as pages 3 and 4 of this question paper.
- This sheet may be useful for answering some of the questions in the examination.
- You may wish to detach this sheet before you begin work.

Data Sheet

Resistors Preferred values for resistors (E24) series:
$1.0,1.1,1.2,1.3,1.5,1.6,1.8,2.0,2.2,2.4,2.7,3.0,3.3,3.6,3.9,4.3$, $4.7,5.1,5.6,6.2,6.8,7.5,8.2,9.1$ ohms and multiples that are ten times greater.

Resistor Printed Code This code consists of letters and numbers:
(BS 1852) R means $\times 1$
K means $\times 1000$ (i.e. 10^{3})
M means $\times 1000000$ (i.e. 10^{6})
Position of the letter gives the decimal point
Tolerances are given by the letter at the end of the code, $\mathrm{F}= \pm 1 \%$,
$\mathrm{G}= \pm 2 \%, \mathrm{~J}= \pm 5 \%, \mathrm{~K}= \pm 10 \%, \mathrm{M}= \pm 20 \%$.
Resistor Colour Code Number Colour

0	Black
1	Brown
2	Red
3	Orange
4	Yellow
5	Green
6	Blue
7	Violet
8	Grey
9	White

Tolerance, gold $= \pm 5 \%$, silver $= \pm 10 \%$, no band $\pm 20 \%$.
Silicon diode
$V_{\mathrm{F}}=0.7 \mathrm{~V}$
Silicon transistor
$V_{\mathrm{be}} \approx 0.7 \mathrm{~V}$ in the on state
$V_{\mathrm{ce}} \approx 0.2 \mathrm{~V}$ when saturated
Resistance $\quad R_{\mathrm{T}}=R_{1}+R_{2}+R_{3} \quad$ series
$\frac{1}{R_{\mathrm{T}}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}} \quad$ parallel
Capacitance $\frac{1}{C_{\mathrm{T}}}=\frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}} \quad$ series
$C_{\mathrm{T}}=C_{1}+C_{2}+C_{3} \quad$ parallel
Time constant $T=C R$
A.C. theory $I_{\mathrm{rms}}=\frac{I_{\mathrm{o}}}{\sqrt{2}}$
$V_{\mathrm{rms}}=\frac{V_{\mathrm{o}}}{\sqrt{2}}$
$X_{\mathrm{C}}=\frac{1}{2 \pi f C} \quad$ reactance
$X_{\mathrm{L}}=2 \pi f L \quad$ reactance
$f=\frac{1}{T} \quad$ frequency, period
$f_{\mathrm{o}}=\frac{1}{2 \pi \sqrt{L C}} \quad$ resonant frequency

$$
\begin{array}{lll}
\text { Operational amplifier } & G_{\mathrm{V}}=\frac{V_{\text {out }}}{V_{\text {in }}} & \text { voltage gain } \\
G_{\mathrm{V}}=-\frac{R_{\mathrm{f}}}{R_{1}} & \text { inverting } \\
G_{\mathrm{V}}=1+\frac{R_{\mathrm{f}}}{R_{1}} & \text { non-inverting } \\
V_{\text {out }}=-R_{\mathrm{f}}\left(\frac{V_{1}}{R_{1}}+\frac{V_{2}}{R_{2}}+\frac{V_{3}}{R_{3}}\right) & \text { summing }
\end{array}
$$

Astable and Monostable
using NAND Gates $f \approx \frac{1}{2 R C}$
$T \approx R C$
$T=1.1 R C$
$t_{\mathrm{H}}=0.7\left(R_{\mathrm{A}}+R_{\mathrm{B}}\right) C$
$t_{\mathrm{L}}=0.7 R_{\mathrm{B}} C$
$f=\frac{1.44}{\left(R_{\mathrm{A}}+2 R_{\mathrm{B}}\right) C}$
Electromagnetic Waves
$c=3 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
astable
monostable
monostable
astable
two resistor circuit
speed in vacuo

List of BASIC Commands DIM variable [(subscripts)]
DO [\{WHILE | UNTIL $\}$ condition]
LOOP
DO
[statement block]
LOOP [\{WHILE | UNTIL\} condition]
FOR counter $=$ start TO end [STEP increment] [statement block]
NEXT counter
GOSUB [label \| line number] [statement block]
RETURN
IF condition THEN
[statement block 1]
ELSE
[statement block 2]
INKEY\$
INP (port \%)
INPUT [;] ["prompt" $[; 1\}$,$] variable list (comma separated)$
LPRINT [expression list] [$\{; 1$,$\}]$
OUT port\%, data\%
PRINT [expression list] [$[; 1\rceil$,
REM remark

Answer all questions in the spaces provided.

1 A logic circuit diagram is shown below.

1 (a) Write the simplest Boolean expressions for the logic signals at points C and D on the diagram above in the spaces provided.

1 (b) (i) Write the simplest Boolean expression for Q in terms of C and D only.

$$
\mathrm{Q}=
$$

\qquad
1 (b) (ii) Write a simple Boolean expression for Q in terms of A and B only.

$$
\mathrm{Q}=
$$

\qquad

1 (c) Complete the truth table to show the logic values of C, D and Q for all the combinations of variables A and B.

\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{Q}
0	0			
0	1			
1	0			
1	1			

1 (d) Draw a logic circuit diagram in the space below using a single logic gate that would have the same function as the original circuit.

2 The output stage of a power supply is shown below.

2 (a) (i) Calculate the current through the resistor when the output terminals are connected together.
\qquad

2 (a) (ii) Calculate the power dissipation of the resistor at this current.
\qquad

2 (b) (i) Calculate the time constant of this circuit, assuming no load is connected to its output.
\qquad
2 (b) (ii) The 9 V supply is switched on and the capacitor is initially uncharged. Approximately how long will it take for the output voltage to reach 9 V ?
\qquad
2 (b) (iii) A load resistance of $10 \mathrm{k} \Omega$ is connected between the output terminals. Calculate the approximate time taken for the output voltage to reach 0 V after the 9 V supply is switched off.

3 An npn junction transistor is to be used as a switch to control an electromagnetic relay.
3 (a) (i) Complete the circuit diagram to show how the transistor is connected, label the leads of the transistor in the spaces shown.

3 (a) (ii) Add to the diagram the component required to protect the transistor from the back emf of the relay.

3 (b) The relay coil has a resistance of 240Ω.
3 (b) (i) Calculate the collector current of the transistor when the relay is switched on.
\qquad
\qquad

3 (b) (ii) The transistor has a current gain (ratio of collector current to base current) of 50 . Calculate the minimum base current when the relay is switched on.
\qquad
\qquad
3 (b) (iii) The input voltage at X which saturates the transistor is 4.7 V . Calculate the value of R , the resistor required.
\qquad
\qquad
3 (b) (iv) Choose the most appropriate value for R from the E 24 series.
\qquad

4 A student designs a very simple light level detector which indicates when the light level falls, as a reminder to switch on a reading lamp to avoid eye strain.

Since the detector is to be battery powered, it must have a minimum power consumption.
The following data is gathered about the devices that could be used.
For the input sensor:

LDR type	resistance at 10lux
\mathbf{a}	$200 \mathrm{k} \Omega$
\mathbf{b}	$94 \mathrm{k} \Omega$
\mathbf{c}	$20 \mathrm{k} \Omega$

For the processing stage:

type	relevant information
NOT gate 4049	Power consumption 0.001 mW
op-amp TL081	Supply current 1.4 mA
op-amp 741	Supply current 1.7 mA

For the output stage:

device	relevant information
filament lamp	6 V 0.06 A
red LED	$\mathrm{V}_{\mathrm{f}} 2 \mathrm{~V} @ 10 \mathrm{~mA}$

4 (a) Choosing from the tables above, select a suitable device and type for each of the subsystems that would result in the lowest current drawn from the battery. Label the system diagram with them.

4 (b) The system could be designed to indicate low light by either switching the output device on or off. Which would be better? Give your reason.
\qquad
\qquad

4 (c) The LDR has a resistance of $150 \mathrm{k} \Omega$ at the light level at which the system should alert the user. The chosen processing stage requires an input voltage of 4.5 V to switch. Draw the circuit diagram of a voltage divider that would give a rising voltage as the light level falls marking the output connection and suitable value for the component other than the LDR.

4 (d) The output of the process stage is 7.3 V , and the minimum output current that will operate the output device is 3 mA at 1.9 V .

Calculate the value of a series resistor for the output device.
\qquad
\qquad

Turn over for the next question

5 A student designs a noise warning system to alert the user to the presence of a noise level likely to damage hearing. An LED flashes on and off when the noise level exceeds a safe value.

5 (a) Label each subsystem in the system diagram below to show a possible design for the noise warning system using the following subsystems:

NOR gate astable comparator LED sound sensor

5 (b) In which subsystem could
5 (b) (i) an op-amp be used \qquad
5 (b) (ii) a 555 IC be used?.

5 (c) The comparator circuit diagram is shown below.

5 (c) (i) Calculate the voltage at point \mathbf{B} in this circuit
\qquad
\qquad
The signal from the sound sensor is connected to point \mathbf{A} in the comparator circuit. What voltage would you expect from the output of this circuit when

5 (c) (ii) the voltage at \mathbf{A} is 4 mV \qquad
5
(c) (iii) the voltage at \mathbf{A} rises to 10 mV ? \qquad

5 (d) Part of the astable circuit diagram is shown below.
5 (d) (i) Complete the circuit by drawing in the wire links required.

5 (d) (ii) Given the values shown on the circuit diagram for R_{A} and R_{B}, calculate the value of C required to give an output frequency of 2 Hz .
\qquad
\qquad
\qquad

6 A zener diode is used to regulate the output voltage of a power supply to 5.1 V when an input voltage between 7 V and 9.6 V is applied.

6 (a) Add a zener diode and its current limiting resistor to complete the circuit diagram below.
+7 V to +9.6 V

6 (b) The minimum zener current should be 5 mA under all conditions. The maximum output current required is 60 mA .

6 (b) (i) Calculate the minimum voltage across the resistor.
\qquad
(b) (ii) What current flows through the resistor when the output current is 60 mA ?
\qquad
(b) (iii) Calculate the required resistor value.
\qquad
(b) (iv) Which preferred E24 resistor value should be chosen?
\qquad
(b) (v) Calculate the power dissipated by the resistor when the input voltage is 9.6 V and the output current is 60 mA .
\qquad
\qquad
6 (b) (vi) Explain whether a 0.25 W power rating would be suitable for the resistor.

