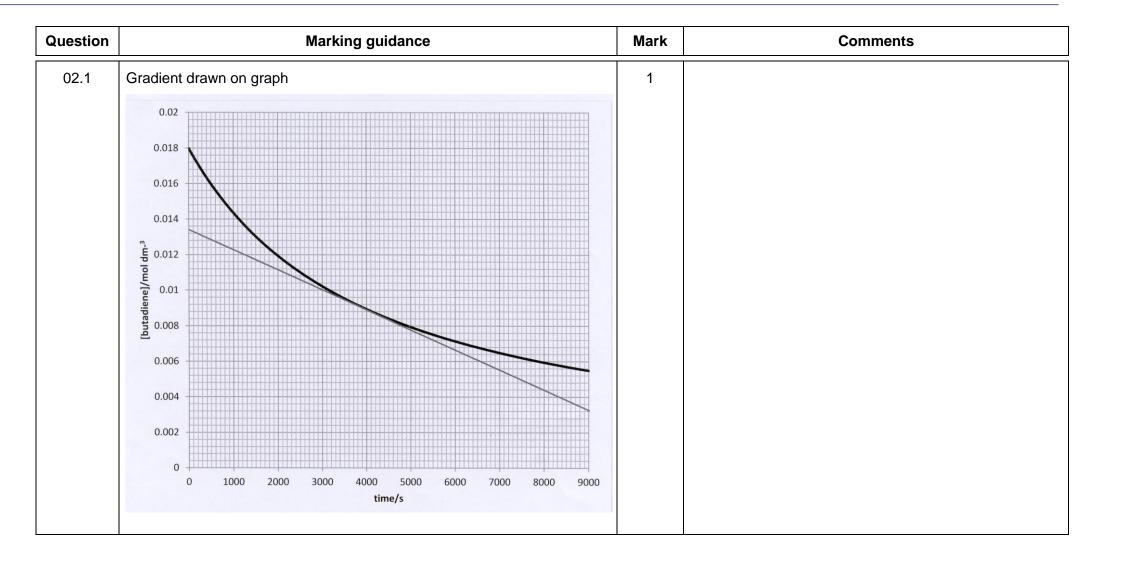


AQA Qualifications


A-level **Chemistry**

Paper 2 (7405/2): Organic and Physical Chemistry Mark scheme

7405 Specimen paper

Version 0.1

Question	Marking guidance	Mark	Comments
01.1	2	1	
01.2	1	1	
01.3	$k = \frac{7.2 \times 10^{-4}}{(1.9 \times 10^{-2})^2 \times (3.5 \times 10^{-2})}$	1	Mark is for insertion of numbers into a correctly rearranged rate equ $k = $ etc If upside down, can score units mark only
	= 57.0	1	Allow consequential marking on incorrect transcription
	$mol^{-2} dm^{+6} s^{-1}$	1	Any order If <i>k</i> calculation wrong, allow units consequential to their <i>k</i>
01.4	3.99×10^{-3} (mol dm ⁻³ s ⁻¹) OR Their $k \times 7.00 \times 10^{-5}$	1	
01.5	Reaction occurs when molecules have $E \ge E_a$ Doubling [E] doubles the number with this E Raising T by 10 °C causes \underline{many} more to have this E	1 1 1	

02.2	= (0.0134 - 0.0032)/(9000 - 0)	1	Allow use of any correct gradient
	$= 1.13 \times 10^{-6}$	1	Allow 1.10–1.16 × 10 ⁻⁶
02.3	Initial rate is 4 times rate at concentration = 0.0090 mol dm ⁻³	1	
	Doubling concentration increases rate by 4 times	1	
	Second order with respect to butadiene	1	

Question	Marking guidance	Mark	Comments
03.1	2,2,4-trimethylpentane	1	
03.2	$C_8H_{18} + 12\frac{1}{2}O_2 \longrightarrow 8CO_2 + 9H_2O$	1	Accept doubled
03.3	5	1	
03.4	$C_{20}H_{42} \longrightarrow C_8H_{18} + 2C_3H_6 + 3C_2H_4$	1	
03.5	Mainly alkenes formed	1	
03.6	$Cl_2 \longrightarrow 2Cl$	1	
	$C_8H_{18} + Cl \longrightarrow [C_8H_{17}] \cdot + HCl$	1	
	$[C_8H_{17}] \cdot + Cl_2 \longrightarrow C_8H_{17}Cl + Cl \cdot$	1	
	Any termination step to form an organic compound	1	
	eg $Cl + [C_8H_{17}] \longrightarrow C_8H_{17}Cl$		
	or 2 $[C_8H_{17}]$ · \longrightarrow $C_{16}H_{34}$		

03.7	Ultraviolet or UV	1	
03.8	4	1	
	CH ₃ H CH ₃ H ₃ C—C—C—CH ₃ H Cl CH ₃	1	
03.9		1	
	Cl		

Question	Marking guidance	Mark	Comments
04.1	3-methylbutan-2-ol	1	
04.2	CH ₃ H ₃ C—C—CH ₃ H O	1	
04.3	Elimination	1	

04.4	CH ₃ H ₃ C—C=C-CH ₃ H	1	
	CH ₃ H ₃ C—C—C==CH ₂ H H	1	
04.5	Position	1	
04.6	C B A Van der Waals forces in C (are weaker than) Dipole-dipole forces in B (which are weaker than) Hydrogen bonding in A	1 1 1	
04.7	CH ₃ H ₃ C—C—CH ₂ CH ₃ OH	1	

04.8	CH ₃		
	H ₃ C—C—CH ₂ OH	1	
	CH ₃		

Question	Marking guidance	Mark	Comments
05.1	Secondary	1	
05.2	Hydrogen bonding Very electronegative N Attached H very δ+ Attracted to lone pair on O	1 1 1 1	

Question	Marking guidance	Mark	Comments
06.1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	
06.2	H ₃ N—C—COO	1	
06.3	CH ₃ H +	1	Allow: (CH ₃) ₃ N—CH ₂ —COOH (Br)
06.4	2-amino-3-hydroxybutanoic acid	1	

(CH ₂) ₄ + H ₃ N—C—COOH H	06.5	+	1	
---	------	---	---	--

Question	Marking guidance	Mark	Comments
07.1	H CH ₃ C=C CH ₃ Cl	1	
	Addition	1	
07.2	H H HO-C-C-C-OH CH ₃ CH ₃ O CH ₃ H O HO-C-C-C-C-OH OR Cl-C-C-C-C-Cl CH ₃ H	1	
07.3	Q is biodegradable Polar C=O group or δ+ C in Q (but not in P) Can be attacked by nucleophiles	1 1 1	

Question	Marking guidance	Mark	Comments
08.1	2-deoxyribose	1	
08.2	Cytosine - which forms hydrogen bonds Top N–H bonds to lone pair on O of guanine Lone pair on N bonds to H–N of guanine Lone pair on O bonds to lower H–N on guanine	1 1 1	If adenine stated, allow 1 mark only for response including hydrogen bonding Allow all 4 marks for a correct diagram showing the hydrogen bonding
08.3	Pt forms a (covalent) link between the two strands of DNA The strands are unable to separate DNA is prevented from replicating	1 1 1	

09.1 (nucleophilic) addition-elimination 1 Not electrophilic addition-elimination Allow C ₆ H ₅ or benzene ring Allow attack by :NH ₂ C ₆ H ₅ M2 not allowed independent of M1, but allow M1 for correct attack on C+ M3 for correct structure with charges but lone pair on	Question	Marking guidance	Mark	Comments
C ₆ H ₅ NH ₂ M1 (RNH ₂) M4 for 3 arrows and Ip 4 is part of M4 M4 (for three arrows and Ione pair) can be shown in more than one structure		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4	Allow C ₆ H ₅ or benzene ring Allow attack by :NH ₂ C ₆ H ₅ M2 not allowed independent of M1, but allow M1 for correct attack on C+ M3 for correct structure with charges but lone pair on O is part of M4 M4 (for three arrows and lone pair) can be shown in

09.2	Dissolve sample in hot solvent / water	1	
	Minimum volume of solvent	1	
	Allow to cool	1	
	Filter off crystals	1	
	Take melting point	1	
	Compare melting point with data value to confirm purity	1	
09.3	$M_{\rm r}$ product = 135.0	1	
	Expected mass = $5.05 \times \frac{135.0}{93.0} = 7.33 \text{ g}$	1	
	Percentage yield = $\frac{4.82}{7.33} \times 100 = 65.8(\%)$	1	
09.4	Conc HNO ₃	1	
	Conc H ₂ SO ₄	1	
09.5	Electrophilic substitution	1	
09.6	Hydrolysis	1	
09.7	Sn/HCl	1	

Question		Marking guidance	Mark	Comments
10	IR			
	M1	absorption at 3360 cm ⁻¹ shows OH alcohol	1	
	NMR			
	M2	4 peaks indicates 4 different environments of hydrogen	1	
	M3	Integration ratio 4 1 3 6	1	
	M4	Quartet (integ 4) + triplet (integ 6) = CH_2CH_3	1	
	M5	Two equivalent CH ₂ CH ₃	1	
	M6	Singlet (integ 1) = OH	1	
	M7	Singlet (integ 3) = CH ₃	1	
		CH ₂ CH ₃		
	M8	H ₃ C — C — OH CH ₂ CH ₃	1	Correct structure without explanation scores maximum of 4 marks

Question	Marking guidance	Mark	Comments
11.1	HCN	1	
11.2	$CH_3CH_2COCH_3 + HCN \longrightarrow CH_3CH_2C(OH)(CN)CH_3$	1	
11.3	Planar C=O Equal chance of nucleophilic attack from both sides Inactive racemic mixture (racemate) formed	1 1 1	Allow independent of 11.1 and 11.2
11.4	HBr OR HCl OR H ₂ SO ₄	1	Allow HI
11.5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4	Allow consequential marking on acid in 11.4
11.6	Major product exists as a pair of enantiomers	1	
	Third isomer is 1-bromobutane (minor product) Obtained via primary carbocation	1 1	