

AQA Qualifications

## A-level Chemistry

Paper 1 (7405/1): Inorganic and Physical Chemistry Mark scheme

7405 Specimen paper

Version 0.1

| Question | Marking guidance                                                                                                                                                                            | Mark             | Comments                                               |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------------------------------------------|
| 01.1     | 1s <sup>2</sup> 2s <sup>2</sup> 2p <sup>6</sup> 3s <sup>2</sup> 3p <sup>3</sup>                                                                                                             | 1                | Allow correct numbers that are not superscripted       |
| 01.2     | F $F$ $F$ $F$ Pyramidal PF <sub>3</sub> with or without lone pair on P Bond angle 107°                                                                                                      | 1                | Allow 106°–108°                                        |
| 01.3     | (8 electrons in outside shell so) 4 electron pairs<br>Repel as far as possible<br>Lone pair repels more than bonding pairs<br>So tetrahedral angle or angle of 109(.5)° decreases (to 107°) | 1<br>1<br>1<br>1 | 4 electron pairs in outside shell of P must be implied |
| 01.4     | 1s <sup>2</sup> 2s <sup>2</sup> 2p <sup>6</sup> 3s <sup>2</sup> 3p <sup>6</sup> 3d <sup>7</sup>                                                                                             | 1                | Allow correct numbers that are not superscripted       |
| 01.5     | Tetrahedral (shape)<br>109.5°                                                                                                                                                               | 1<br>1           | Allow 109°                                             |
| 01.6     | Too many electrons in d sub-shell / orbitals                                                                                                                                                | 1                |                                                        |

| Question | Marking guidance                                                                                                                                                                                                                  | Mark        | Comments                                                                                               |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------------------------------------------------------------------------------------------------|
| 02.1     | Number of protons increases (across the period) / nuclear charge increases                                                                                                                                                        | 1           |                                                                                                        |
|          | Attraction between the nucleus and electrons increases                                                                                                                                                                            | 1           |                                                                                                        |
| 02.2     | Sulfur molecules are bigger than phosphorus molecules<br>because sulfur molecules are $S_8$ , phosphorus molecules are $P_4$<br>Therefore, van der Waals / dispersion / London forces between molecules<br>are stronger in sulfur | 1<br>1<br>1 | Allow sulfur molecules have bigger surface area and sulfur molecules have bigger <i>M</i> <sub>r</sub> |
| 02.3     | Contains $O^{2-}$ ions $O^{2-}$ ions accept a proton from water forming $OH^{-}$ ions                                                                                                                                             | 1<br>1      | $O^{2-} + H_2O \longrightarrow 2OH^-$ scores both marks                                                |
| 02.4     | $P_4O_{10} + 6H_2O \longrightarrow 4H_3PO_4$ (or ionised phosphates)                                                                                                                                                              | 1           |                                                                                                        |
| 02.5     | 0 to 1                                                                                                                                                                                                                            | 1           |                                                                                                        |



| Question | Marking Guidance                                                                                                                                                       | Mark   | Comments                                                                                                                                  |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------------------------------------------------------------------------------------------------------------------------------------------|
| 03.1     | F                                                                                                                                                                      | 1      |                                                                                                                                           |
| 03.2     | $E^{\Theta} \operatorname{SO}_{4}^{2^{-}}/\operatorname{SO}_{2} < E^{\Theta} \operatorname{Br}_{2}/\operatorname{Br}^{-}$                                              | 1      | Allow correct answer expressed in words, eg electrode potential for sulfate ions / sulfur dioxide is less than that for bromine / bromide |
| 03.3     | $Pt H_2 H^+  Br_2 Br^- Pt$                                                                                                                                             | 1      | Ignore state symbols                                                                                                                      |
| 03.4     | 1.23 (V)                                                                                                                                                               | 1      |                                                                                                                                           |
| 03.5     | Oxygen in $O_2$ gas has oxidation state zero which changes to $-2$<br>Because electrons are added to $O_2$ (oxygen)                                                    | 1<br>1 | Oxidation state of oxygen decreases by 2                                                                                                  |
| 03.6     | A fuel cell converts more of the available energy from combustion of hydrogen into kinetic energy of the car / an internal combustion engine wastes more (heat) energy | 1      |                                                                                                                                           |

| Question | Marking guidance                                                                                            | Mark | Comments                                     |
|----------|-------------------------------------------------------------------------------------------------------------|------|----------------------------------------------|
| 04.1     | $\Delta H = \Sigma$ (bonds broken) – $\Sigma$ (bonds formed)                                                | 1    |                                              |
|          | $=\frac{1}{2}(N \equiv N) + \frac{3}{2}(H = H) - 3(N = H)$                                                  | 1    |                                              |
|          | OR                                                                                                          |      |                                              |
|          | $= \frac{1}{2} \times 944 + \frac{3}{2} \times 436 - 3 \times 388$                                          |      |                                              |
|          | $= -38 (kJ mol^{-1})$                                                                                       | 1    | Allow 1 mark for +38 (kJ mol <sup>-1</sup> ) |
| 04.2     | Mean bond enthalpy is not the same as the actual N–H bond enthalpy in $\mathrm{NH}_{\mathrm{3}}$            | 1    |                                              |
| 04.3     | When a change is applied to a system at equilibrium, the position of equilibrium moves to oppose the change | 1    |                                              |

| 04.4 | 2 mol of gas form 1 mol<br>At high pressure the position of equilibrium moves to the right to lower the<br>pressure / oppose the high pressure<br>This increases the yield of ammonia | 1<br>1<br>1 |                                                                                               |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------------------------------------------------------------------------------------------|
| 04.5 | Impurities or sulfur compounds block the active sites                                                                                                                                 | 1           |                                                                                               |
| 04.6 | $\mathcal{K}_{c} = \frac{[NH_{3}]}{[N_{2}]^{0.5} \times [H_{2}]^{1.5}}$                                                                                                               | 1           |                                                                                               |
| 04.7 | Moles of nitrogen = $1 - 0.36/2 = 0.82$                                                                                                                                               | 1           | M1 and M2 can be scored if answer to 4.6 is incorrect                                         |
|      | Moles of hydrogen = $3 - (0.36 \times \frac{3}{2}) = 2.46$<br>$K_c = \frac{(0.36/0.2)}{[(0.82/0.2)^{0.5}(2.46/0.2)^{1.5}]}$<br>$= \frac{1.8}{2.025 \times 43.14}$                     | 1           | If correct $K_c$ for 2 mol of ammonia, allow 4 marks for answer of 4.0–4.4 × 10 <sup>-4</sup> |

| Question | Marking guidance                                                    | Mark | Comments                                  |
|----------|---------------------------------------------------------------------|------|-------------------------------------------|
| 05.1     | $\Delta S = \Sigma S(\text{products}) - \Sigma S(\text{reactants})$ |      |                                           |
|          | $= 193 - 192/2 - 131 \times \frac{3}{2}$                            | 1    |                                           |
|          | $= -99.5 \text{ J K}^{-1} \text{ mol}^{-1}$                         | 1    | Units essential                           |
| 05.2     | $\Delta G = \Delta H - T \Delta S$                                  |      |                                           |
|          | $= -46.2 - \frac{773 \times (-99.5)}{1000}$                         | 1    | Mark consequentially to $\Delta S$ in 5.1 |
|          | = +30.7 kJ mol <sup>-1</sup>                                        | 1    | Units essential                           |
| 05.3     | When $\Delta G = 0$ , $\Delta H = T \Delta S$                       |      |                                           |
|          | $T = \Delta H / \Delta S = -46.2 \times (1000 / -99.5)$             | 1    | Mark consequentially to $\Delta S$ in 5.1 |
|          | <i>T</i> = 464 (K)                                                  | 1    |                                           |

| 05.4 | Diagram marks:                                                                                         |   |  |
|------|--------------------------------------------------------------------------------------------------------|---|--|
|      | Diagram of a molecule showing 3 N–H bonds and one lone pair                                            | 1 |  |
|      | Diagram showing $\delta$ + and $\delta$ – charges                                                      | 1 |  |
|      | Diagram showing $\delta \text{+}$ hydrogen on one molecule attracted to lone pair on a second molecule | 1 |  |
|      | Explanation mark:                                                                                      |   |  |
|      | Hydrogen bonding is a strong enough force to allow a liquid to form easily                             | 1 |  |

| Question | Marking guidance                                                                                         | Mark | Comments                                                                   |
|----------|----------------------------------------------------------------------------------------------------------|------|----------------------------------------------------------------------------|
| 06.1     | Burette                                                                                                  | 1    |                                                                            |
|          | Can deliver variable volumes                                                                             | 1    |                                                                            |
| 06.2     | The change in pH is gradual / not rapid at the end point                                                 | 1    |                                                                            |
|          | An indicator would change colour over a range of volumes of sodium hydroxide                             | 1    | Allow indicator would not change colour rapidly / with a few drops of NaOH |
| 06.3     | $[H^+] = 10^{-pH} = 1.58 \times 10^{-12}$                                                                | 1    |                                                                            |
|          | $[OH^{-}] = 1 \times 10^{-14} / 1.58 \times 10^{-12} = 6.33 \times 10^{-3} \text{ (mol dm}^{-3}\text{)}$ | 1    | Allow 6.31–6.33 × $10^{-3}$ (mol dm <sup>-3</sup> )                        |
| 06.4     | $\mathcal{K}_{a} = \underline{[NH_{3}][H^{+}]}$                                                          | 1    |                                                                            |
|          | [NH <sub>4</sub> ']                                                                                      |      |                                                                            |
| 06.5     | At this point, $[NH_3] = [H^+]$                                                                          |      |                                                                            |
|          | Therefore $K_a = \frac{[H^+]^2}{1}$                                                                      | 1    |                                                                            |
|          | $[NH_4]$                                                                                                 | 4    |                                                                            |
|          | $[\Pi] = 10 = 2.51 \times 10$                                                                            | 1    |                                                                            |
|          | $K_{a} = (2.51 \times 10^{\circ})^{-1} = 6.31 \times 10^{-10} \text{ (mol dm}^{\circ})$                  | 1    |                                                                            |

| Question | Marking guidance                                                                                               | Mark | Comments                                                |
|----------|----------------------------------------------------------------------------------------------------------------|------|---------------------------------------------------------|
| 07.1     | Υ                                                                                                              | 1    |                                                         |
| 07.2     | x                                                                                                              | 1    |                                                         |
| 07.3     | Jump in trend of ionisation energies after removal of fifth electron                                           |      |                                                         |
|          | Fits with an element with 5 outer electrons (4s <sup>2</sup> 3d <sup>3</sup> ) like V                          | 1    |                                                         |
| 07.4     | Calcium has no electron energy levels with a difference in energy corresponding to the energy of visible light | 1    | Allow calcium has no electrons in its d orbital         |
|          | Vanadium has d electrons that can be excited to a higher level                                                 | 1    |                                                         |
|          | Some frequencies of visible light are absorbed                                                                 | 1    | Allow colour or wavelength instead of frequencies in M3 |
|          | The other frequencies of white light are transmitted (or reflected) causing the appearance of colour           | 1    | and M4                                                  |
| 07.5     | Reducing agent                                                                                                 | 1    |                                                         |
|          | Two different colours of solution                                                                              | 1    |                                                         |
|          | Each colour due to vanadium in a different oxidation state                                                     | 1    |                                                         |

| Question | Marking guidance                                                                                                    | Mark   | Comments |
|----------|---------------------------------------------------------------------------------------------------------------------|--------|----------|
| 08.1     | Blue precipitate                                                                                                    | 1      |          |
|          | Dissolves to give a dark blue solution                                                                              | 1      |          |
| 08.2     | diagram of copper complex (ignore charges)                                                                          | 1      |          |
|          | OH <sub>2</sub><br>NH <sub>3</sub><br>NH <sub>3</sub><br>OH <sub>2</sub><br>OH <sub>2</sub><br>2+                   |        |          |
| 08.3     | Octahedral                                                                                                          | 1      |          |
| 08.4     | 90°                                                                                                                 | 1      |          |
| 08.5     | $ [Cu(NH_3)_4(H_2O)_2]^{2+} + 2NH_2CH_2CH_2NH_2 \longrightarrow $ $ [Cu(NH_2CH_2CH_2NH_2)_2(H_2O)_2]^{2+} + 4NH_3 $ | 1      |          |
| 08.6     | Cu–N bonds formed have similar enthalpy / energy to Cu–N bonds broken<br>Same number of bonds broken and made       | 1<br>1 |          |

| 08.7 | 3 particles form 5 particles / disorder increases because more particles are formed / entropy change is positive | 1 |  |
|------|------------------------------------------------------------------------------------------------------------------|---|--|
|      | Free-energy change is negative                                                                                   | 1 |  |

| Question | Marking guidance                                                                                        | Mark | Comments                                               |
|----------|---------------------------------------------------------------------------------------------------------|------|--------------------------------------------------------|
| 09.1     | Start a clock when KCI is added to water                                                                | 1    |                                                        |
|          | Record the temperature every subsequent minute for about 5 minutes                                      | 1    | Allow record the temperature at regular time intervals |
|          | Plot a graph of temperature vs time                                                                     | 1    | until some time after all the solid has dissolved      |
|          | Extrapolate back to time of mixing = 0 and determine the temperature                                    | 1    |                                                        |
| 09.2     | Heat taken in = $m \times q \times \Delta T = 50 \times 4.18 \times 5.4 = 1128.6 \text{ J}$             | 1    | Max 2 if 14.6 °C used as $\Delta T$                    |
|          | Moles of KCl = 5.00/74.6 = 0.0670                                                                       | 1    |                                                        |
|          | Enthalpy change per mole = $+1128.6/0.0670 = 16800 \text{ J mol}^{-1}$                                  | 1    |                                                        |
|          | $= +16.8 \text{ (kJ mol}^{-1}\text{)}$                                                                  | 1    |                                                        |
| 09.3     | $\Delta H_{\text{solution}} = \Delta H_{\text{lattice}} + \Sigma (\Delta H_{\text{hydration of ions}})$ | 1    | Allow correct cycle                                    |
|          | $\Delta H_{\text{lattice}} = -82.9 - (-1650 + 2 \times -364)$                                           | 1    |                                                        |
|          | $\Delta H_{\text{lattice}} = +2295 \text{ (kJ mol}^{-1}\text{)}$                                        | 1    |                                                        |
| 09.4     | Magnesium ion is smaller than the calcium ion                                                           | 1    |                                                        |
|          | It attracts the chloride ion more strongly / stronger ionic bonding                                     | 1    |                                                        |

| Question | Marking guidance                                                                                     | Mark | Comments |
|----------|------------------------------------------------------------------------------------------------------|------|----------|
| 10.1     | <b>Q</b> is calcium or magnesium                                                                     | 1    |          |
|          | bromide                                                                                              | 1    |          |
|          | R is aluminium                                                                                       | 1    |          |
|          | chloride                                                                                             | 1    |          |
|          | S is iron(III)                                                                                       | 1    |          |
|          | sulfate                                                                                              | 1    |          |
| 10.2     | $Ba^{2+}(aq) + SO_4^{2-}(aq) \longrightarrow BaSO_4(s)$                                              | 1    |          |
|          | $[Fe(H_2O)_6]^{3+}(aq) + 3OH^{-}(aq) \longrightarrow Fe(H_2O)_3(OH)_3(s) + 3H_2O(l)$                 | 1    |          |
|          | $2[Fe(H_2O)_6]^{3+}(aq) + 3CO_3^{2-}(aq) \longrightarrow 2Fe(H_2O)_3(OH)_3(s) + 3H_2O(I) + 3CO_2(g)$ | 1    |          |
|          | $[Fe(H_2O)_6]^{3+}(aq) + 4Cl^{-}(aq) \longrightarrow [FeCl_4]^{-}(aq) + 6H_2O(l)$                    | 1    |          |