Chemistry

Paper 2 (7404/2): Organic and Physical Chemistry
Mark scheme

7404
Specimen paper

Version 0.1

Question	Marking guidance	Mark	Comments
01.1		1	
01.2	4-methylpent-4-en-1-ol	1	or 4-methylpent-3-en-1-ol
01.3		1	

Question	Marking guidance	Mark	Comments
02.1	Mass of alcohol burned $=0.50(\mathrm{~g})$ and temperature rise $=20.1\left({ }^{\circ} \mathrm{C}\right)$	1	Both must be correct for 1 mark
02.2	$\begin{aligned} & q=50 \times 4.18 \times 20.1 \mathrm{OR} q=m c \Delta T \\ & =4200(\mathrm{~J}) \end{aligned}$	1	
02.3	$\begin{aligned} & \mathrm{mol} \text { of alcohol }=n=0.50 / 100=0.0050 \\ & \Delta H=-q / 1000 \mathrm{n} \text { OR }-q / n \\ & =-840 \mathrm{~kJ} \mathrm{~mol}^{-1} \text { or }-840000 \mathrm{~J} \mathrm{~mol}^{-1} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	Allow this mark if - sign missing Answer must be negative
02.4	Less negative than the reference Heat loss OR incomplete combustion OR evaporation of alcohol OR heat transferred to beaker not taken into account	1	
02.5	Since water has a density of $1 \mathrm{~g} \mathrm{~cm}^{-3}$ A volume of $50 \mathrm{~cm}^{3}$ could be measured out	1	

Question	Marking guidance	Mark	Comments
03.1	(Compounds with the) same molecular formula but different structural / displayed / skeletal formula	1	
03.2	2-methylpent-1-ene or correct structure	1	Either order
2-methylpent-2-ene or correct structure	1		

Question	Marking guidance	Mark	Comments
04.1	C H O $\%$ $\frac{40}{12}$ $\frac{6.7}{1}$ $\frac{53.3}{16}$ Divide by A_{r} $=3.33$ $=6.7$ $=3.33$ Divide by smallest $=$ 1 2 1 Empirical formula $\mathrm{CH}_{2} \mathrm{O}$ Molecular formula $\frac{90}{30} \times \mathrm{CH}_{2} \mathrm{O}=\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{3}$	1 1 1	
04.2	$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \longrightarrow 2 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+2 \mathrm{CO}_{2}$ Any three from: - Yeast - Aqueous - $20-40^{\circ} \mathrm{C}$ (or warm) - No air $\left(\mathrm{O}_{2}\right)$ or anaerobic	1 3	Mark 1 is for the equation Marks 2-4 are for the conditions Apply list principle to extra answers given beyond 3 conditions

Any two from:

- The OH in acids has a (broad) absorption at $2500-3000 \mathrm{~cm}^{-1}$
- The $\mathrm{C}=\mathrm{O}$ in acids has an absorption at 1680-1750 cm^{-1}
- Alcohol OH absorption in different place (3230-3550 cm^{-1}) from acid OH absorption

Allow fingerprint region (or $1500-400 \mathrm{~cm}^{-1}$)

Apply list principle to extra answers given beyond 2 differences

Question	Marking guidance	Mark	Comments
05.1	UV light	1	
$0 . \mathrm{Br} \bullet+\bullet \mathrm{CClF}_{2}$	2	1 mark for each radical Allow 1 mark for correct equation forming Cl•	
0.2	$\mathrm{Br} \bullet+\mathrm{O}_{3} \longrightarrow \mathrm{BrO} \bullet+\mathrm{O}_{2}$	1	Error carried forward - allow full credit for correct equations with $\mathrm{Cl} \bullet$
	$\mathrm{BrO} \bullet+\mathrm{O}_{3} \longrightarrow \mathrm{Br} \bullet+2 \mathrm{O}_{2}$	1	

Question	Marking guidance	Mark	Comments
06.1	C $_{6} \mathrm{H}_{14}$ (or correct alkane structure with 6 carbons)	1	Allow hexane or any other correctly named alkane with 6 carbons
06.2	(Liquefy and) fractionally distil	1	Allow fractional distillation
06.3	(E or Z) but-2-ene	1	
06.4	High temperature	1	If value given, allow $400-900^{\circ}{ }^{\circ} \mathrm{C}$ or $650-1200 \mathrm{~K}$
	High pressure	1	If value given, allow $\geq 1 \mathrm{MPa}$
06.5	Rate increase	1	
	Greater collision frequency because molecules are closer together	1	
	Yield increase	1	
	Equilibrium shifts to reduce pressure	1	
	Equilibrium moves to right-hand side with fewer moles gas	1	
06.6	Rate increase	1	
	More collisions between molecules with $E>E_{\mathrm{a}}$	1	
	Yield decrease	1	
	Equilibrium shifts to reduce temperature	1	
	In endothermic direction	1	

Question	Marking guidance	Mark	Comments
07.1	Any two from: - Rinse burette with bromine water - Fill jet space - Remove funnel	2 max	
07.2	Drop sizes vary	1	Allow percentage error for amount of oil will be large as the amount used is so small
07.3	Use a larger volume of oil eg $10.0 \mathrm{~cm}^{3}$ (using a measuring cylinder or pipette) Make up to eg $250 \mathrm{~cm}^{3}$ (in a volumetric flask) (titrate) samples (eg $5.0 \mathrm{~cm}^{3}$)	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	Allow alternatives such as measuring a known mass of oil and making up a standard solution for sampling
07.4	$\begin{aligned} & \begin{aligned} \text { Mass of oil } & =0.92 \times(0.05 \times 5) \\ & =0.23(\mathrm{~g}) \\ \text { Mol of oil } & =0.23 / 885 \\ & =2.6 \times 10^{-4} \end{aligned} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	Allow consequential marking using value from mass of oil
07.5	$\begin{aligned} \text { Mol bromine } & =0.020 \times 0.0394 \\ & =7.9 \times 10^{-4}(2 \text { significant figures }) \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	Allow 1 out of 2 if more or fewer significant figures quoted

07.6	Ratio	oil $\quad:$ bromine		
	2.6×10^{-4}	$: 7.9 \times 10^{-4}$		
	1	$: 3$		
	Hence, $3 \mathrm{C}=\mathrm{C}$ bonds	1	1	

Section B

In this section, each correct answer is awarded 1 mark.

Question	Key
8	B
9	C
10	D
11	C
12	D
13	B
14	C
15	A
16	D
17	D
18	C
19	C
20	B
21	A
22	C

