

AQA Qualifications

## AS

## Chemistry

Paper 1 (7404/1): Inorganic and Physical Chemistry Mark scheme

7404

Specimen paper

Version 0.1

## Section A

| Question | Marking guidance                                                                                | Mark | Comments                                     |
|----------|-------------------------------------------------------------------------------------------------|------|----------------------------------------------|
| 01.1     | 1s <sup>2</sup> 2s <sup>2</sup> 2p <sup>6</sup> 3s <sup>2</sup> 3p <sup>6</sup> 4s <sup>2</sup> | 1    |                                              |
| 01.2     | $Ca + 2H_2O \longrightarrow Ca(OH)_2 + H_2$                                                     | 1    |                                              |
| 01.3     | Oxidising agent                                                                                 | 1    |                                              |
| 01.4     | Neutralise acidic soil / test for CO <sub>2</sub> gas / to make mortar                          | 1    |                                              |
| 01.5     | $Ca(g) \longrightarrow Ca^{+}(g) + e()$                                                         | 1    |                                              |
| 01.6     | Decrease Atoms get bigger / more (energy) shells                                                | 1 1  | If not 'decrease', then chemical error = 0/3 |
|          | More shielding so attraction of outer electron not as strong                                    | 1    |                                              |

| Question | Marking guidance                                                             | Mark | Comments                                      |
|----------|------------------------------------------------------------------------------|------|-----------------------------------------------|
| 02.1     | Average mass of 1 atom of an element 1/12 mass of 1 atom of carbon-12        | 1    |                                               |
| 02.2     | (32 × 91) + (33 × 1.8) + (34 × 7.2) <b>OR</b> 3216.2<br>100                  | 1 1  | Mark 1 for top line<br>Mark 2 for bottom line |
|          | 32.2                                                                         | 1    |                                               |
| 02.3     | High voltage applied to sample (in polar solvent) Molecules lose an electron | 1    |                                               |
| 02.4     | So they can be accelerated So they can be detected                           | 1    | Not deflection Allow to reflect ions          |

| Question | Marking guidance                                                              | Mark | Comments                                      |
|----------|-------------------------------------------------------------------------------|------|-----------------------------------------------|
| 03.1     | Enthalpy change when 1 mol of substance is formed                             | 1    |                                               |
|          | From its elements                                                             | 1    |                                               |
|          | All reactants and products in their standard states under standard conditions | 1    |                                               |
| 03.2     | It's an element / by definition                                               | 1    |                                               |
| 03.3     | 4 bonding pairs of electrons                                                  | 1    |                                               |
|          | Repel equally                                                                 | 1    |                                               |
| 03.4     | $\Delta H = \Sigma$ enthalpy of products – $\Sigma$ enthalpy of reactants     | 1    |                                               |
|          | $= (2 \times -680) + (6 \times -269) - (-85)$                                 | 1    |                                               |
|          | $= -2889 \text{ (kJ mol}^{-1})$                                               | 1    |                                               |
| 03.5     | 436 + 158 - (562 × 2)                                                         | 1    |                                               |
|          | -530 (M2)                                                                     | 1    |                                               |
|          | So for 1 mole of HF = $-265$ (kJ mol <sup>-1</sup> )                          | 1    | Mark is for the answer to mark 2 divided by 2 |

| Question | Marking guidance                                                                                  | Mark        | Comments                                     |
|----------|---------------------------------------------------------------------------------------------------|-------------|----------------------------------------------|
| 04.1     | Reaction at equilibrium moves to oppose any change imposed on it                                  | 1           |                                              |
| 04.2     | Decreases  Equilibrium moves to the side with fewest moles, ie left-hand side  To reduce pressure | 1<br>1<br>1 | If not 'decrease', then chemical error = 0/3 |
| 04.3     | Positive Equilibrium moves to decrease the temperature / absorb heat energy                       | 1<br>1      |                                              |
| 04.4     | Products are a mixture of gases / difficult to separate gases                                     | 1           |                                              |

| Question | Marking guidance                                                                                | Mark | Comments                                     |
|----------|-------------------------------------------------------------------------------------------------|------|----------------------------------------------|
| 05.1     | Decreases                                                                                       | 1    | If not 'decrease', then chemical error = 0/3 |
|          | Atoms get bigger / there are more (energy) levels                                               | 1    |                                              |
|          | There is more shielding so nucleus cannot attract the electrons in the covalent bond as readily | 1    |                                              |
| 05.2     | Add a few drops of silver nitrate to each solution                                              | 1    |                                              |
|          | The chloride would give a white precipitate                                                     | 1    |                                              |
|          | The bromide would give a cream precipitate                                                      | 1    |                                              |
|          | Add (dilute) ammonia                                                                            | 1    |                                              |
|          | White precipitate dissolves / cream precipitate does not dissolve                               | 1    |                                              |
| 05.3     | $2NaCl + H_2SO_4 \longrightarrow Na_2SO_4 + 2HCl $ <b>OR</b>                                    | 1    |                                              |
|          | $NaCl + H_2SO_4 \longrightarrow NaHSO_4 + HCl$                                                  |      |                                              |
| 05.4     | Calculate the mass of Na <sub>2</sub> CO <sub>3</sub> needed ( $M_r \times 0.1 / 4$ )           | 1    |                                              |
|          | Weigh (by difference) to 3 significant figures on a balance                                     | 1    |                                              |
|          | Dissolve in distilled water                                                                     | 1    |                                              |
|          | Add to volumetric flask                                                                         | 1    |                                              |
|          | Include washings                                                                                | 1    |                                              |
|          | Make up to the mark with distilled water                                                        | 1    |                                              |
|          | Shake flask                                                                                     | 1    |                                              |

| Question | Marking guidance                                                   | Mark | Comments                                     |
|----------|--------------------------------------------------------------------|------|----------------------------------------------|
| 06.1     | 50.0 × 0.520 = 0.0260 mol HCl<br>1000                              | 1    | Mark consequentially to student's answer(s). |
|          | $Mol\ MgCO_3 = 0.0130$                                             | 1    |                                              |
|          | Mass $MgCO_3 = 0.0130 \times 84.3 = 1.096 g$                       | 1    |                                              |
|          | Percentage purity = mass of MgCO <sub>3</sub> × 100 mass of sample | 1    |                                              |
|          | = 83.0(%)                                                          | 1    |                                              |
| 06.2     | $MgCO_3 + 2HNO_3 \longrightarrow Mg(NO_3)_2 + H_2O + CO_2$         | 1    |                                              |

| Question | Marking guidance                                                                 | Mark | Comments                                       |
|----------|----------------------------------------------------------------------------------|------|------------------------------------------------|
| 07.1     | 3.65 <b>OR</b> 0.0433 mol 84.3                                                   | 1    |                                                |
|          | T = 333 K <b>and</b> P = 100 000 Pa                                              | 1    |                                                |
|          | $V = \frac{nRT}{P} = \frac{0.0433 \times 8.31 \times 333}{100\ 000}$             | 1    |                                                |
|          | $1.20 \times 10^{-3} \mathrm{m}^3$                                               | 1    |                                                |
| 07.2     | 3.65 <b>OR</b> 0.0433 mol 84.3                                                   |      | No mark here unless not given in answer to 7.1 |
|          | 0.0433 mol MgO                                                                   | 1    | Mark is for mol MgCO <sub>3</sub> = mol MgO    |
|          | Mass MgO = $0.0433 \times 40.3 = 1.74$ (g)                                       | 1    |                                                |
| 07.3     | Some of the solid is lost in weighing product / solid is blown away with the gas | 1    |                                                |

Section B

In this section, each correct answer is awarded 1 mark.

| Question | Key |
|----------|-----|
| 8        | D   |
| 9        | D   |
| 10       | А   |
| 11       | С   |
| 12       | В   |
| 13       | A   |
| 14       | С   |
| 15       | С   |
| 16       | D   |
| 17       | D   |
| 18       | В   |
| 19       | A   |
| 20       | С   |
| 21       | В   |
| 22       | С   |