

General Certificate of Education (A-level) Applied June 2012

Applied Science

SC11

(Specification 8771/8773/8776/8777/8779)

Unit 11: Controlling Chemical Processes

Final

Mark Scheme

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aga.org.uk

Copyright © 2012 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Question	Part	Subpart	Marking guidance	AO	Mark	Comment
			Capital	1 AO1		
1	(a)	(i)	Direct	1 AO1	3	
			Indirect	1 AO1		
4 (-)	(0)	(")	The cost per unit of the product	1 AO1	2	
1	(a)	(ii)	is <u>not directly proportional</u> to this cost.	1 AO1	2	
			Reactants are added, reaction occurs	1 AO1		
1	(b)	(i)	Then products are removed (and vessel is cleaned)	1 AO1	2	
			Faster/ less downtime	1 1 1 1	T T	
1	(b)	(ii)	purer product	1 AO1 1 AO1	2	
1	(c)	(i)	Loss of oxygen/decrease in oxidation state/gain of electrons	1 AO1	1	
			elections	1 701		
1	(c)	(ii)	160	1 AO2	1	
			No of moles Fe = 8000000/56 = 142857	1 AO2		
			1 mole of Fe ₂ O ₃ gives 2 moles of Fe therefore no of	. 7.02		
1	(c)	(iii)	moles of $Fe_2O_3 = 142857/2 = 71429$	1 AO2	3	
			$\text{Mass of Fe}_2\text{O}_3 = 71429 \times 160 = 11428571g \text{ or } 11.4$	1 AUZ		
			tonnes	1 AO2		
1	(d)	(i)	Thermal decomposition/endothermic/heterogeneous	1 AO2	1	
' '	(u)	(1)	Thermal decomposition/endothermic/neterogeneous	1 AOZ	•	
1	(d)	(ii)	(+)4	1 AO2	2	
	\-\ /	. ,	(+)4	1 AO2		
1	(d)	(iii)	slag	1 AO2	1	
Г			Both forward and reverse reactions occur	1 AO1	 	
2	(a)		At same rate/concentrations of reactants and products	I AUI	2	
	(/		are constant	1 AO1		

_						
2	(b)	(i)	[CH ₄][H ₂ O]/[CO][H ₂] ³ Correct terms (including square brackets) Correct indices	1 AO2 1 AO2	2	
2	(b)	(ii)	$Mol^{-2}dm^6$	1 AO2	1	
2	(c)	(i)	QWC: A good answer might include: A system at equilibrium will alter the position of equilibrium to oppose the change imposed. The yield of methane will increase if temperature is decreased. This is because the forward reaction is exothermic. If the temperature is reduced the equilibrium will shift to the right to increase the temperature again.	2 AO1 3 AO2	5	
2	(c)	(ii)	Increase 2 gaseous molecules on RHS and 4 gaseous molecules on LHS System will shift to right to reduce the pressure	1 AO2 1 AO2 1 AO2	3	
2	(d)	(i)	A substance that alters the rate of reaction Without being used up itself	1 AO1 1 AO1	2	
L			<u> </u>		I.	
2	(d)	(ii)	None A catalyst speeds up forward and reverse reactions equally	1 AO2 1 AO1 1 AO1	3	
3	(a)		No naked flame Contain vapour/breathing apparatus	1 AO1 1 AO1	2	
3	(b)		Energy Reactants and products labelled General shape Products lower than reactants	1 AO1 1 AO1 1 AO1 1 AO2	4	

3	(c)		Bonds broken = 432 + 2×413 + 838 = 2096 Bonds made = 3 × 413 + 346 + 612 = 2197 Bonds broken – bonds formed = 2096–2197 = -101 kJ The enthalpy change OR heat energy released	1 AO2 1 AO2 1 AO2 1 AO2	4	
3	(d)		when one mole of a compound is burnt completely.	1 AO1	2	
3	(e)		$\begin{split} \Sigma \Delta H_c & \text{(reactants)} - \Sigma \Delta H_c \text{(products)} \text{/appropriate Hess's cycle} \\ \Sigma \Delta H_c \text{(products)} &= -5540.3 \\ \Sigma \Delta H_c \text{(reactants)} &= -6003.1 \\ -6003.1 + 5540.3 &= -462.8 \text{ (ignore units)} \\ \text{Divide by 4} &= -115.7 \end{split}$	1 AO2 1 AO2 1 AO2 1 AO2 1 AO2	5	
4	(a)	(i)	Any three of: Burette Bulb pipette Conical flask stopclock thermometer suitable reaction vessel eg round bottomed/conical flask	3 AO3	3	
4	(a)	(ii)	QWC: A good answer might include After 1 minute 10 cm³ of the mixture is removed using a bulb pipette and delivered into the conical flask. A few drops of phenolphalein indicator is added and the mixture is titrated . 1.00 mol dm³ hydrochloric acid would be used in the burette. The mixture is swirled as the acid is delivered from the burette. When near to the endpoint the acid is added dropwise. The endpoint occurs when no pink colouration can be seen. The volume of hydrochloric acid added is then recorded. 10cm³ portions are taken after every subsequent minute and the titration procedure repeated.	5 AO1	5	

4 (a) So number of moles of NaOH present at that instant can be determined.						
4 (a) (iv) Once portion is removed reaction is still proceeding 1 AO3 1						
1 (a) (ii) Ones person to removed redesion to easily proceeding 1 7100 1						
4 (a) (v) Increase reliability 1 AO3 1						
4 (a) (v) Increase reliability						
The principality of an annual o						
The minimum amount of energy 1 AO1						
Particles require to react when they collide 1 AO1						
At a higher temperature the particles will move faster						
4 (b) and so collide more frequently 1 AO2 5						
The proportion of particles that possess an energy						
greater than or equal to the Ea will increase 1 AO2						
There will therefore be more successful collisions per						
second 1 AO2						
Change in concentration (of products/reactants) 1 AO1						
5 (a) Over time 1 AO1 2						
Over time 1 701						
5 (b) (i) Rate would halve 1 AO2 1						
3 (b) (i) Nate would haive 1 AO2 1						
5 /b) /ii) 2						
5 (b) (ii) 2 1 AO2 1						
Rate = k[CH ₃ COCH ₃][H ⁺] complete answer gains 3						
marks						
5 (b) (iii) Inclusion of k 1 AO2 3						
[CH ₃ COCH ₃]						
1 AO2						
5 (c) Altering the <u>concentration</u> does not affect the rate 1 AO1 1						
, , , , , , , , , , , , , , , , , , , ,						
5 (d) (i) 0.52/0.4 = 1.3 1 AO2 1						
Rearranged equation is [V] = [7]/[X] ² K 1 AO2	li i					
Rearranged equation ie $[Y] = [Z]/[X]^2 K_c$ 1 AO2						
Rearranged equation ie $[Y] = [Z]/[X]^2 K_c$ 1 AO2 1 AO2 2 Or if alternative value used 3.00×10^5						